×
18.05.2018
218.016.523f

Результат интеллектуальной деятельности: Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании. Устройство дополнительно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом. Охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка. Технический результат: обеспечение возможности повышения точности и скорости измерения и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений. 6 ил.

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости.

Наиболее близким решением к заявленному решению является устройство определения нагрузки нулевой ползучести, описанное в научной статье Гершман Е.И., Жевненко С.Н., «Метод измерения поверхностного натяжения границы раздела «твердое-газ» «insitu»», Физика металлов и металловедение, 2010, согласно которой устройство содержит печь электросопротивления - 10, установленную в подвижный держатель печи - 11, термопары - 12, систему подачу газов, систему нагружения образца, которая представляет собой передвижную каретку - 1, которая может перемещаться в вертикальном направлении при помощи винтов микро- и макро- перемещений - 2, 3, данная каретка позволяет перемещать камеру - 5 и, соответственно, образец - 6 относительно датчика веса - 8, который жестко закреплен на неподвижном основании - 9, и, таким образом, нагружать или разгружать его, упругая гофра - 4, позволяющая перемещать камеру и образец относительно датчика без разгерметизации всей системы, а передача усилия от датчика веса к образцу осуществляется через алундовую штангу - 7.

В устройстве для измерения нагрузки нулевой ползучести, описанном выше, используется одна камера с одним образцом. Собственная масса фольги и масса сцепки (подвесов: петли на фольге и соединительной штанги) создают постоянную нагрузку на фольгу, которая учитывается при расчете нагрузки нулевой ползучести. Одновременно это обуславливает недостаток такого устройства, а именно нагрузку нулевой ползучести, меньшую, чем эти постоянные веса (подвесы, собственный вес фольги) измерять нельзя в принципе. Как следствие, поверхностную энергию можно измерять, если она имеет значение выше определенного положительного уровня.

Таким образом, недостатками известного устройства является невозможность измерения нагрузки нулевой ползучести меньше, чем постоянные веса (подвесы, собственный вес фольги), высокая величина погрешности и возможность измерять поверхностную энергию только, если она имеет значение выше определенного положительного уровня.

Основной задачей изобретения является нахождение нагрузки нулевой ползучести, т.е. нагрузки при которой не происходит ни удлинения, ни сокращения образца в виде фольги или проволоки.

Технический результат - повышение точности и скорости измерения, и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений.

Технический результат достигается тем, что устройство для измерения нагрузки нулевой ползучести металлических материалов, содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую подвижную в вертикальном направлении каретку, расположенную на неподвижной опоре и охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, и дополнительно снабжено камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.

Краткий перечень чертежей

На фиг. 1 представлена общая схема установки для измерения нагрузки нулевой ползучести описанная в прототипе.

На фиг. 2 представлена общая схема заявленного устройства.

На фиг. 3 представлена схема охлаждаемого блока с датчиками.

На фиг. 4 представлен образец для измерения нагрузки нулевой ползучести (25 - толстостенная гильза, 26 - металлическая фольга).

На фиг. 5 представлены кривые зависимости нагрузки на образце от времени. Пунктирной линией указана нагрузка Р0, которая соответствует отсутствию деформации (нулевой ползучести).

На фиг. 6 представлены примеры описания с помощью ЭВМ экспериментальных данных, а) растяжение образца; б) сокращение.

В предлагаемой установке был реализован метод нахождения нагрузки нулевой ползучести «in-situ». Это достигается путем использования датчика веса, который являлся одновременно и нагружающим элементом, и датчиком измерения силы, создаваемым поверхностным натяжением в образце.

Сущность изобретения заключается в том, заявленное устройство (фиг. 2) содержит в качестве нагревающего элемента печь электросопротивления - 13 с двумя независимыми обмотками из нихрома. Внутренняя обмотка используется для регулирования температуры в рабочей части печи, внешняя обмотка используется для поддержания постоянной температуры на 100°С ниже рабочей температуры, таким образом, уменьшая абсолютное значение регулируемой мощности. Эта обмотка находится под постоянным напряжением. Точность поддержания температуры составляет 0.5. При этом печь установлена в подвижный держатель - 14, который обеспечивает перемещение печи в вертикальном направлении. Регулирование и контроль температуры осуществляется при помощи контрольной и регулирующей хромель-алюмелевых термопар 15, горячий спай которых находится в непосредственной близости от образцов, а холодный спай термопар поддерживается при постоянной температуре при помощи термостата.

Для создания в камерах инертной или восстановительной атмосферы была создана система подачи аргона и водорода - 16, в которую входит генератор водорода, баллон с аргоном, газоподводящие трубки, регуляторы расхода газа, жидкостной затвор. Во время работы реактор постоянно продувается водородом или смесью водорода и аргона с малой скоростью (5-10 см3/мин).

Охлаждаемый блок - 17 системы нагружения образца металлического материала содержит до шести отдельных камер - 19 с образцами - 18 выполненными в виде фольги (толщиной 18-30 мкм) свернутой в цилиндр диаметром 4-8 мм., таким образом, измерения могут проводиться на шести различных составах (если требуется измерять изотермы поверхностной энергии, т.е. зависимости поверхностной энергии от концентрации второго компонента в твердом растворе).

Чтобы создать равновесную атмосферу, сгладить температурное поле в камере печи и компенсировать термическое расширение фольга - 26 приваривалась верхним концом к толстостенной гильзе - 25 (Фиг. 4).

При этом образцы устанавливаются (фиг. 3) в камеры в перевернутом виде, образец переворачивают с «ног на голову», т.е. переворачивают гильзу с приваренной в ее фольгой для измерения нагрузки нулевой ползучести, начиная от нулевых значений. Для этого образец помещают на кварцевый шток - 24, в нижней части которого закреплена микрометрическая головка - 21, а датчики веса - 20, которые являются одновременно и нагружающим элементом, и датчиком измерения силы, располагают над образцами, каждый датчик связан с образцом с помощью подвеса - 23. Для регулирования и контроля температуры данного блока охлаждения было создано центральное отверстие - 22, в которое и устанавливаются термопары.

Градуировка датчика проводилась при помощи стандартных гирь весом от 1 до 50 грамм. Одновременно проводилось наблюдение величины прогиба датчика в зависимости от нагрузки, для того чтобы сопоставить, при проведении эксперимента, величину деформации образца в зависимости от нагрузки.

Если нагрузка, создаваемая датчиком на образце, меньше нагрузки нулевой ползучести, то фольга сжимается и показания датчика будут постепенно возрастать, если же нагрузка больше нагрузки нулевой ползучести, то фольга растягивается, и показания датчика будут постепенно убывать (Фиг. 5). Независимо от выбранной величины нагрузки через некоторое время система должна прийти к равновесному значению, соответствующему отсутствию деформации образца, то есть к состоянию, когда сила поверхностного натяжения уравновесит силу, создаваемую датчиком.

Деформация в условиях эксперимента протекает по механизму Набаро-Херинга, который устанавливает линейную зависимость между скоростью деформации образца и напряжением на датчике, коэффициент пропорциональности равен величине обратной вязкости.

где η - коэффициент вязкости

где В - константа теории Набарро-Херринга, Ω - атомный объем, D - коэффициент объемной диффузии, V - средний объем зерна.

При этом напряжение σ/ складывается из напряжения, создаваемого датчиком и напряжения, создаваемого силами поверхностного натяжения:

где, σ - задаваемое датчиком напряжение,

σ0 - напряжение нулевой ползучести, включающее в себя вес тяги и половину веса фольг;

С другой стороны, поскольку датчик является упругой балкой, то можно написать:

Коэффициент пропорциональности А определяется по прогибу датчика под различными стандартными весами и по полученному графику «величина прогиба - приложенная нагрузка» определялся коэффициент А, который является тангенсом угла наклона.

Подставив (3) в (1) и (4), получим систему уравнений:

Сделав подстановку, получим:

Разделив переменные, придем к уравнению:

Проинтегрировав уравнение (7), получим:

Уравнение (8) является кинетической зависимостью напряжения на датчике от времени для образца при определенной температуре. Если образцы имеют одинаковые размеры, вместо напряжения удобно использовать нагрузку в виде веса Р0. Подбирая параметры уравнения (8) с помощью ЭВМ, которые дают наилучшее совпадение экспериментальной кривой и теоретической, можно найти напряжение (нагрузку) нулевой ползучести σ00) и коэффициент вязкости η.

Нагрузка Р связана с напряжением по уравнению , где w - толщина фольги, a h - ширина. Истинная нагрузка нулевой ползучести связана с поверхностными энергиями в соответствии с соотношением:

где - общая площадь границ зерен, при цилиндрической форме зерна. - длина фольги, γСП поверхностная энергия свободной поверхности (СП, поверхности «твердое-газ»), γГЗ - поверхностная энергия границ зерен, с хорошей точностью можно считать .

При этом истинная нагрузка нулевой ползучести и измеряемая вышеуказанным способом отличаются на величину постоянных нагрузок, связанных с подвесами и собственным весом фольги:

В случае перевернутой схемы расположения образца и датчика постоянные веса могут быть включены в собственный вес датчика и программно обнулены.

Кроме того, можно определить нагрузку нулевой ползучести по зависимости скорости деформации от напряжения. Исходя из уравнений (1) и (3) можно написать:

Или с учетом (4)

Сравнивая уравнения (11) и (12) с уравнением прямой: y=G⋅x+D, легко видеть, что графики в координатах от σ или от σ будут линейными, поскольку η не зависит от напряжения в условиях диффузионной ползучести. По отсекаемому отрезку на оси ординат можно определить отношение напряжения нулевой ползучести к вязкости, а тангенс угла наклона этой прямой будет давать величину обратную вязкости. Отношение отсекаемого отрезка (коэффициент D) к тангенсу угла наклона (коэффициент С) позволит определить напряжение нулевой ползучести.

Таким образом, заявленное устройство позволяет провести измерения нагрузки нулевой ползучести, начиная от нулевых значений, а также значительно ускорить процесс получения данных по поверхностной энергии и приведет к снижению величины случайных погрешностей и количества выбросов.

Устройство для измерения нагрузки нулевой ползучести металлических материалов, содержащее печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, отличающееся тем, что оно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Источник поступления информации: Портал edrid.ru

Showing 151-160 of 322 items.
19.01.2018
№218.016.0d0d

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе γ-TiAl. Интерметаллический сплав на основе TiAl содержит, ат.%: алюминий 44-46, ниобий 5-7, хром 1-3, цирконий 1-2, бор 0,1-0,5, лантан ≤0,2, титан - остальное. Сплав характеризуется мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002633135
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d7e

Композиционный материал на полимерной основе для комбинированной защиты гамма, нейтронного и электромагнитного излучения, наполненный нанопорошком вольфрама, нитрида бора и технического углерода

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%....
Тип: Изобретение
Номер охранного документа: 0002632934
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d88

Способ измерения характеристик аморфных ферромагнитных микропроводов

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко...
Тип: Изобретение
Номер охранного документа: 0002632996
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0d9c

Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002632932
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.157b

Биоинженерная конструкция с антибактериальным покрытием для замещения костно-хрящевых дефектов

Изобретение относится к области медицины, а именно к ортопедии, травматологии и трансплантологии, и предназначено для изготовления протезов, скаффолдов и биоимплантатов для замещения костно-хрящевых дефектов. Биоинженерная многослойная конструкция на основе биосовместимого...
Тип: Изобретение
Номер охранного документа: 0002634860
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1710

Способ прошивки в стане винтовой прокатки

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб и полых трубных заготовок винтовой прошивкой. Способ включает прошивку круглой заготовки в стане винтовой прокатки. Уменьшение разностенности и овальности труб и гильз...
Тип: Изобретение
Номер охранного документа: 0002635685
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.175e

Способ деформационно-термической обработки для формирования функциональных характеристик медицинского клипирующего устройства из сплава ti-ni с памятью формы

Изобретение относится к металлургии, а именно к термомеханической обработке изделий из сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ), в частности клипирующего устройства для создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах...
Тип: Изобретение
Номер охранного документа: 0002635676
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.17bc

Способ подготовки к работе воздушной фурмы доменной печи

Изобретение относится к области металлургии и может быть использовано при подготовке к работе воздушных фурм доменных печей. Осуществляют очистку наружного стакана и рыльной части металлической дробью, напыление на них алюмосодержащего газотермического покрытия, установление теплоизолирующей...
Тип: Изобретение
Номер охранного документа: 0002635489
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.186d

Способ получения лигатуры на медно-никелевой основе

Изобретение относится к металлургии и может быть использовано при производстве лигатур на основе меди, никеля, магния и алюминия. При производстве лигатуры шихтовые материалы в виде гранул чистых металлов размером от 1 до 10 мм, таких как никель, медь и магний смешивают в требуемых пропорциях и...
Тип: Изобретение
Номер охранного документа: 0002635490
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.20a4

Устройство для повышения тягового усилия локомотива

Изобретение относится к области железнодорожного транспорта, в частности к устройствам для повышения тягового усилия локомотива. Устройство для повышения тягового усилия локомотива включает систему подачи песка под колеса локомотива, систему дополнительных воздуховодов, расположенных попарно по...
Тип: Изобретение
Номер охранного документа: 0002641611
Дата охранного документа: 18.01.2018
+ добавить свой РИД