×
18.05.2018
218.016.523f

Результат интеллектуальной деятельности: Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании. Устройство дополнительно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом. Охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка. Технический результат: обеспечение возможности повышения точности и скорости измерения и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений. 6 ил.

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости.

Наиболее близким решением к заявленному решению является устройство определения нагрузки нулевой ползучести, описанное в научной статье Гершман Е.И., Жевненко С.Н., «Метод измерения поверхностного натяжения границы раздела «твердое-газ» «insitu»», Физика металлов и металловедение, 2010, согласно которой устройство содержит печь электросопротивления - 10, установленную в подвижный держатель печи - 11, термопары - 12, систему подачу газов, систему нагружения образца, которая представляет собой передвижную каретку - 1, которая может перемещаться в вертикальном направлении при помощи винтов микро- и макро- перемещений - 2, 3, данная каретка позволяет перемещать камеру - 5 и, соответственно, образец - 6 относительно датчика веса - 8, который жестко закреплен на неподвижном основании - 9, и, таким образом, нагружать или разгружать его, упругая гофра - 4, позволяющая перемещать камеру и образец относительно датчика без разгерметизации всей системы, а передача усилия от датчика веса к образцу осуществляется через алундовую штангу - 7.

В устройстве для измерения нагрузки нулевой ползучести, описанном выше, используется одна камера с одним образцом. Собственная масса фольги и масса сцепки (подвесов: петли на фольге и соединительной штанги) создают постоянную нагрузку на фольгу, которая учитывается при расчете нагрузки нулевой ползучести. Одновременно это обуславливает недостаток такого устройства, а именно нагрузку нулевой ползучести, меньшую, чем эти постоянные веса (подвесы, собственный вес фольги) измерять нельзя в принципе. Как следствие, поверхностную энергию можно измерять, если она имеет значение выше определенного положительного уровня.

Таким образом, недостатками известного устройства является невозможность измерения нагрузки нулевой ползучести меньше, чем постоянные веса (подвесы, собственный вес фольги), высокая величина погрешности и возможность измерять поверхностную энергию только, если она имеет значение выше определенного положительного уровня.

Основной задачей изобретения является нахождение нагрузки нулевой ползучести, т.е. нагрузки при которой не происходит ни удлинения, ни сокращения образца в виде фольги или проволоки.

Технический результат - повышение точности и скорости измерения, и обеспечение возможности измерения нагрузки нулевой ползучести, начиная от нулевых значений.

Технический результат достигается тем, что устройство для измерения нагрузки нулевой ползучести металлических материалов, содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую подвижную в вертикальном направлении каретку, расположенную на неподвижной опоре и охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, и дополнительно снабжено камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.

Краткий перечень чертежей

На фиг. 1 представлена общая схема установки для измерения нагрузки нулевой ползучести описанная в прототипе.

На фиг. 2 представлена общая схема заявленного устройства.

На фиг. 3 представлена схема охлаждаемого блока с датчиками.

На фиг. 4 представлен образец для измерения нагрузки нулевой ползучести (25 - толстостенная гильза, 26 - металлическая фольга).

На фиг. 5 представлены кривые зависимости нагрузки на образце от времени. Пунктирной линией указана нагрузка Р0, которая соответствует отсутствию деформации (нулевой ползучести).

На фиг. 6 представлены примеры описания с помощью ЭВМ экспериментальных данных, а) растяжение образца; б) сокращение.

В предлагаемой установке был реализован метод нахождения нагрузки нулевой ползучести «in-situ». Это достигается путем использования датчика веса, который являлся одновременно и нагружающим элементом, и датчиком измерения силы, создаваемым поверхностным натяжением в образце.

Сущность изобретения заключается в том, заявленное устройство (фиг. 2) содержит в качестве нагревающего элемента печь электросопротивления - 13 с двумя независимыми обмотками из нихрома. Внутренняя обмотка используется для регулирования температуры в рабочей части печи, внешняя обмотка используется для поддержания постоянной температуры на 100°С ниже рабочей температуры, таким образом, уменьшая абсолютное значение регулируемой мощности. Эта обмотка находится под постоянным напряжением. Точность поддержания температуры составляет 0.5. При этом печь установлена в подвижный держатель - 14, который обеспечивает перемещение печи в вертикальном направлении. Регулирование и контроль температуры осуществляется при помощи контрольной и регулирующей хромель-алюмелевых термопар 15, горячий спай которых находится в непосредственной близости от образцов, а холодный спай термопар поддерживается при постоянной температуре при помощи термостата.

Для создания в камерах инертной или восстановительной атмосферы была создана система подачи аргона и водорода - 16, в которую входит генератор водорода, баллон с аргоном, газоподводящие трубки, регуляторы расхода газа, жидкостной затвор. Во время работы реактор постоянно продувается водородом или смесью водорода и аргона с малой скоростью (5-10 см3/мин).

Охлаждаемый блок - 17 системы нагружения образца металлического материала содержит до шести отдельных камер - 19 с образцами - 18 выполненными в виде фольги (толщиной 18-30 мкм) свернутой в цилиндр диаметром 4-8 мм., таким образом, измерения могут проводиться на шести различных составах (если требуется измерять изотермы поверхностной энергии, т.е. зависимости поверхностной энергии от концентрации второго компонента в твердом растворе).

Чтобы создать равновесную атмосферу, сгладить температурное поле в камере печи и компенсировать термическое расширение фольга - 26 приваривалась верхним концом к толстостенной гильзе - 25 (Фиг. 4).

При этом образцы устанавливаются (фиг. 3) в камеры в перевернутом виде, образец переворачивают с «ног на голову», т.е. переворачивают гильзу с приваренной в ее фольгой для измерения нагрузки нулевой ползучести, начиная от нулевых значений. Для этого образец помещают на кварцевый шток - 24, в нижней части которого закреплена микрометрическая головка - 21, а датчики веса - 20, которые являются одновременно и нагружающим элементом, и датчиком измерения силы, располагают над образцами, каждый датчик связан с образцом с помощью подвеса - 23. Для регулирования и контроля температуры данного блока охлаждения было создано центральное отверстие - 22, в которое и устанавливаются термопары.

Градуировка датчика проводилась при помощи стандартных гирь весом от 1 до 50 грамм. Одновременно проводилось наблюдение величины прогиба датчика в зависимости от нагрузки, для того чтобы сопоставить, при проведении эксперимента, величину деформации образца в зависимости от нагрузки.

Если нагрузка, создаваемая датчиком на образце, меньше нагрузки нулевой ползучести, то фольга сжимается и показания датчика будут постепенно возрастать, если же нагрузка больше нагрузки нулевой ползучести, то фольга растягивается, и показания датчика будут постепенно убывать (Фиг. 5). Независимо от выбранной величины нагрузки через некоторое время система должна прийти к равновесному значению, соответствующему отсутствию деформации образца, то есть к состоянию, когда сила поверхностного натяжения уравновесит силу, создаваемую датчиком.

Деформация в условиях эксперимента протекает по механизму Набаро-Херинга, который устанавливает линейную зависимость между скоростью деформации образца и напряжением на датчике, коэффициент пропорциональности равен величине обратной вязкости.

где η - коэффициент вязкости

где В - константа теории Набарро-Херринга, Ω - атомный объем, D - коэффициент объемной диффузии, V - средний объем зерна.

При этом напряжение σ/ складывается из напряжения, создаваемого датчиком и напряжения, создаваемого силами поверхностного натяжения:

где, σ - задаваемое датчиком напряжение,

σ0 - напряжение нулевой ползучести, включающее в себя вес тяги и половину веса фольг;

С другой стороны, поскольку датчик является упругой балкой, то можно написать:

Коэффициент пропорциональности А определяется по прогибу датчика под различными стандартными весами и по полученному графику «величина прогиба - приложенная нагрузка» определялся коэффициент А, который является тангенсом угла наклона.

Подставив (3) в (1) и (4), получим систему уравнений:

Сделав подстановку, получим:

Разделив переменные, придем к уравнению:

Проинтегрировав уравнение (7), получим:

Уравнение (8) является кинетической зависимостью напряжения на датчике от времени для образца при определенной температуре. Если образцы имеют одинаковые размеры, вместо напряжения удобно использовать нагрузку в виде веса Р0. Подбирая параметры уравнения (8) с помощью ЭВМ, которые дают наилучшее совпадение экспериментальной кривой и теоретической, можно найти напряжение (нагрузку) нулевой ползучести σ00) и коэффициент вязкости η.

Нагрузка Р связана с напряжением по уравнению , где w - толщина фольги, a h - ширина. Истинная нагрузка нулевой ползучести связана с поверхностными энергиями в соответствии с соотношением:

где - общая площадь границ зерен, при цилиндрической форме зерна. - длина фольги, γСП поверхностная энергия свободной поверхности (СП, поверхности «твердое-газ»), γГЗ - поверхностная энергия границ зерен, с хорошей точностью можно считать .

При этом истинная нагрузка нулевой ползучести и измеряемая вышеуказанным способом отличаются на величину постоянных нагрузок, связанных с подвесами и собственным весом фольги:

В случае перевернутой схемы расположения образца и датчика постоянные веса могут быть включены в собственный вес датчика и программно обнулены.

Кроме того, можно определить нагрузку нулевой ползучести по зависимости скорости деформации от напряжения. Исходя из уравнений (1) и (3) можно написать:

Или с учетом (4)

Сравнивая уравнения (11) и (12) с уравнением прямой: y=G⋅x+D, легко видеть, что графики в координатах от σ или от σ будут линейными, поскольку η не зависит от напряжения в условиях диффузионной ползучести. По отсекаемому отрезку на оси ординат можно определить отношение напряжения нулевой ползучести к вязкости, а тангенс угла наклона этой прямой будет давать величину обратную вязкости. Отношение отсекаемого отрезка (коэффициент D) к тангенсу угла наклона (коэффициент С) позволит определить напряжение нулевой ползучести.

Таким образом, заявленное устройство позволяет провести измерения нагрузки нулевой ползучести, начиная от нулевых значений, а также значительно ускорить процесс получения данных по поверхностной энергии и приведет к снижению величины случайных погрешностей и количества выбросов.

Устройство для измерения нагрузки нулевой ползучести металлических материалов, содержащее печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную и регулирующую термопары, систему подачи газов, систему нагружения образца металлического материала, включающую охлаждаемый герметичный блок с камерой для размещения в ней испытываемого образца в виде гильзы, и с датчиком веса, установленным на неподвижном основании, отличающееся тем, что оно снабжено дополнительными камерами для размещения в каждой из них испытываемого образца в перевернутом виде, и дополнительными датчиками веса, каждый из которых посредством подвеса связан с соответствующим образцом, при этом охлаждающий герметичный блок выполнен с центральным отверстием для установки в него указанных термопар, а каждый испытываемый образец установлен на кварцевом штоке, в нижней части которого закреплена микрометрическая головка.
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Устройство измерения поверхностного натяжения и коэффициента вязкости металлов
Источник поступления информации: Портал edrid.ru

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
+ добавить свой РИД