×
18.05.2018
218.016.5170

Результат интеллектуальной деятельности: Способ определения вязкости высоковязких жидкостей и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость. Изобретение может быть использовано для определения вязкости высоковязких жидкостей. Заявлен способ определения вязкости высоковязких жидкостей, включающий помещение исследуемой жидкости в емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, до полного заполнения ее объема, осуществление поворота наружного цилиндра относительно внутреннего цилиндра, причем поворот наружного цилиндра относительно внутреннего цилиндра осуществляют под действием груза, закрепленного на связанном с наружным цилиндром рычаге, между ограничителями на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров. При этом измеряют секундомером время поворота упомянутого наружного цилиндра Т(η), а вязкость исследуемой жидкости η определяют по формуле: где K - коэффициент, определяемый размерами наружного и внутреннего цилиндров и рассчитанный по формуле: , K(α) - коэффициент, определяемый углом поворота наружного цилиндра и рассчитанный по формуле: , Т(η) - время поворота наружного цилиндра; α - половинный угол поворота наружного цилиндра; η - вязкость исследуемой жидкости; L - длина рычага; М - вес груза; g - ускорение свободного падения; Н - высота цилиндров; R - радиус наружного цилиндра; R - радиус внутреннего цилиндра. Также предложено устройство для определения вязкости высоковязких жидкостей, включающее коаксиальные цилиндры равной высоты, емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, в него введены рычаг с элементами фиксации, груз, закрепленный подвижно на одном конце рычага с возможностью изменения момента вращения, другой конец которого жестко закреплен на наружном цилиндре, боковые опоры с установленными на них ограничителями угла поворота рычага, причем оси вращения упомянутых коаксиальных цилиндров расположены горизонтально. Технический результат - упрощение конструкции устройства и возможность определения вязкости высоковязких жидкостей при криогенных температурах с минимальными погрешностями. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технике измерения абсолютного коэффициента вязкости жидкостей, а более конкретно к измерению вязкости методом вращающихся цилиндров, между которыми помещается исследуемая жидкость. Изобретение может быть использовано для определения вязкости высоковязких жидкостей.

Известны способы определения вязкости жидкостей с использованием ротационного вискозиметра. Измерение можно проводить двумя способами:

1) прикладывая постоянный момент и измеряя скорость вращения цилиндров относительно друг друга (ГОСТ 33155-2014, ASTM D 4684-08);

2) придавая определенную скорость вращения цилиндрам относительно друг друга и измеряя момент вращения (ГОСТ 33137-2014, ГОСТ 19832-87, ISO 3219: 1993).

При первом способе момент обычно задается с помощью груза, закрепленного на нити, намотанной на шкив, закрепленный на оси внутреннего цилиндра, и замеряется скорость вращения внутреннего цилиндра вокруг оси (или скорость опускания груза). При этом оси цилиндров располагаются вертикально.

При втором способе ось внутреннего цилиндра закрепляется на валу электродвигателя и, при задании определенной скорости вращения, измеряют мощность на валу двигателя, которая связана с моментом вращения.

Оба конструктивных варианта имеют существенный недостаток. В случае определения вязкости высоковязких жидкостей при криогенных температурах необходимо обеспечить ввод вала в криогенный термостат или изготавливать криогенный термостат большого размера для возможности опускания груза на значительное расстояние. Кроме того, работа узлов трения, входящих в конструкцию подобных вискозиметров, затруднена при криогенных температурах, что вносит ошибки в определение вязкости.

Известен способ определения вязкости высоковязких жидкостей по патенту RU 2075056, опубл. 10.03.1997 (МПК: G01N 11/14 (2006.01)). Способ включает измерение параметра, характеризующего вращение в исследуемой жидкости внутреннего цилиндра ротационного вискозиметра, укрепленного на нити подвеса, и определение вязкости расчетным путем. В качестве измеряемого параметра используют величины времени запаздывания, а для их измерения используют два соосно размещенных на концах нити подвеса магнита, напротив которых размещают магнитоуправляемые герметические контакты, один из которых включен в цепь включения электросекундомера, а другой - в цепь его выключения.

Недостатком данного способа является необходимость проведения двух измерений времени запаздывания при двух длинах внутреннего цилиндра, большой объем емкости для исследуемой жидкости и необходимость определения модуля кручения нити при температуре испытания.

Известен ротационный вискозиметр (патент РФ №2424500, опубл. 20.07.2011, МПК: G01N 11/10 (2006.01)), содержащий привод, на валу которого закреплен вращающийся цилиндр, соосный с ним воспринимающий цилиндр, соединенный с упругим элементом, и датчик угла поворота воспринимающего цилиндра. Упругий элемент содержит поворотный и неподвижный диски, воспринимающий цилиндр выполнен в виде стакана и соосно закреплен на поворотном диске упругого элемента, причем поворотный диск посредством П-образных плоских пружин, размещенных равномерно вокруг вала, связан с неподвижным диском упругого элемента, при этом П-образные плоские пружины закреплены радиально по периферии дисков, снабженных осевыми отверстиями для прохода вала привода.

Недостатком известного ротационного вискозиметра является значительная зависимость трения в узлах вращения двигателя от температуры при криогенных температурах и влияние низких температур на характеристики тензометров, регистрирующих угол поворота наружного цилиндра.

Задачей изобретения является определение вязкости высоковязких жидкостей при криогенных температурах.

Техническим результатом изобретения является упрощение конструкции устройства и возможность определения вязкости высоковязких жидкостей при криогенных температурах с минимальными погрешностями.

Технический результат достигается тем, что способ определения вязкости высоковязких жидкостей включает помещение исследуемой жидкости в емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, до полного заполнения ее объема, осуществление поворота наружного цилиндра относительно внутреннего цилиндра, причем поворот наружного цилиндра относительно внутреннего цилиндра осуществляют под действием груза, закрепленного на связанном с наружным цилиндром рычаге, между ограничителями на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров, при этом измеряют секундомером время поворота упомянутого наружного цилиндра Т(η), а вязкость исследуемой жидкости η определяют по формуле:

где KG - коэффициент, определяемый размерами наружного и внутреннего цилиндров и рассчитанный по формуле: ,

K(α) - коэффициент, определяемый углом поворота наружного цилиндра и рассчитанный по формуле: ,

Т(η) - время поворота наружного цилиндра;

α - половинный угол поворота наружного цилиндра;

η - вязкость исследуемой жидкости;

L - длина рычага;

М - вес груза;

g - ускорение свободного падения;

Н - высота цилиндров;

Rнар - радиус наружного цилиндра;

Rвн - радиус внутреннего цилиндра.

Технический результат достигается тем, что в устройство для определения вязкости высоковязких жидкостей, включающее коаксиальные цилиндры равной высоты, емкость, образованную зазором постоянного размера между стенками коаксиальных цилиндров, введены рычаг с элементами фиксации, груз, закрепленный подвижно на одном конце рычага с возможностью изменения момента вращения, другой конец которого жестко закреплен на наружном цилиндре, боковые опоры с установленными на них ограничителями угла поворота рычага, причем оси вращения упомянутых коаксиальных цилиндров расположены горизонтально.

Сущность изобретения заключается в определении времени поворота на определенный угол наружного цилиндра предлагаемого устройства относительно соосного внутреннего цилиндра с малым зазором между ними, в который помещена исследуемая высоковязкая жидкость. Оси вращения цилиндров расположены горизонтально. Поворот осуществляется под воздействием груза, установленного на рычаге, который закреплен подвижно на наружном цилиндре с возможностью изменения момента вращения. Время поворота наружного цилиндра на угол от +α до -α относительно горизонтальной плоскости, проходящей через оси цилиндров под действием груза, определяется вязкостью исследуемой жидкости, находящейся в зазоре между цилиндрами, которая за счет вязкого трения оказывает сопротивление повороту наружного цилиндра под воздействием груза. Для высоковязких жидкостей скорость поворота наружного цилиндра устанавливается так, чтобы момент вращения, прилагаемый к наружному цилиндру, был равен противодействующему моменту вязкого трения в жидкости, который растет с увеличением скорости сдвига.

Само устройство выполнено симметрично, что позволяет после цикла измерения его перевернуть на 180° и провести следующий цикл измерения без необходимости поворота рычага в исходное положение.

Сущность изобретения поясняется чертежами (фиг. 1, 2).

На фиг. 1 и 2 представлена принципиальная схема предложенного устройства для осуществления способа определения вязкости высоковязких жидкостей (разрезы спереди и сбоку).

На фиг. 1, 2 приняты следующие обозначения:

1 - внутренний цилиндр;

2 - наружный цилиндр;

3 - зазор между стенками коаксиальных цилиндров;

4 - рычаг;

5 - груз;

6 - боковые опоры;

7, 8 - ограничители угла поворота рычага 4;

9, 10 - отверстия для скобы-фиксатора.

Устройство для определения вязкости высоковязких жидкостей включает коаксиальные цилиндры равной высоты - внутреннего 1 и наружного 2, емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров, рычаг 4, груз 5, закрепленный подвижно на одном конце рычага 4 с возможностью изменения момента вращения, другой конец рычага 4 жестко закреплен на наружном цилиндре 2, боковые опоры 6 с установленными на них ограничителями угла поворота 7 и 8 рычага 4, причем оси вращения коаксиальных цилиндров 1, 2 расположены горизонтально. Вблизи ограничителей 7 и 8 в опорах 6 имеются отверстия 9 и 10 для скобы-фиксатора (на схеме не показана), которая перед началом измерения удерживает рычаг 4 в верхнем положении.

Конструкция устройства симметрична, что позволяет переходить к следующему циклу измерения без перемещения рычага 4 в исходное положение поворотом устройства на 180°.

Способ определения вязкости высоковязких жидкостей реализуется с помощью предложенного устройства (фиг. 1, 2) следующим образом.

Исследуемую высоковязкую жидкость помещают в емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров равной высоты - внутреннего 1 и наружного 2, до полного заполнения ее объема, рычаг 4 поднимают в верхнее положение до ограничителя 7 и фиксируют скобой-фиксатором (не показана) через отверстие 9. Собранное устройство помещают в криогенную камеру (не показана) с установленной температурой испытания. Для проведения измерения вязкости исследуемой жидкости вынимают скобу-фиксатор, освобождая рычаг 4, и осуществляют поворот наружного цилиндра 2 относительно внутреннего цилиндра 1 под действием груза 5, закрепленного на рычаге 4, связанном с наружным цилиндром 2, от верхнего ограничителя 7 до нижнего ограничителя 8 на угол от +α до -α относительно горизонтальной плоскости, проходящей через ось вращения коаксиальных цилиндров (угол отсчитывается по ограничителям угла поворота 7, 8 рычага 4 на опорах 6), при этом через окно в криогенной камере наблюдают поворот рычага 6 и секундомером измеряют время поворота. После поворота в отверстие 10 вставляют скобу-фиксатор, закрепляя рычаг 4, и переворачивают устройство на 180° для следующего измерения.

Затем по формуле (1) определяют вязкость исследуемой высоковязкой жидкости.

Время поворота наружного цилиндра на угол от +α до -α относительно горизонтальной плоскости, проходящей через оси цилиндров под действием груза, определяется вязкостью исследуемой жидкости, находящейся в зазоре между цилиндрами, которая за счет вязкого трения оказывает сопротивление повороту наружного цилиндра под воздействием груза. Для высоковязких жидкостей скорость поворота наружного цилиндра устанавливается так, чтобы момент вращения, прилагаемый к наружному цилиндру, был равен противодействующему моменту вязкого трения в жидкости, который растет с увеличением скорости сдвига.

Пример реализации

Исследуемую высоковязкую жидкость - термостойкую смазку ЦИАТИМ-221 (ГОСТ 9433-80) с рабочим диапазоном температур от -60°С до +150°С помещают в емкость, образованную зазором 3 постоянного размера между стенками коаксиальных цилиндров равной высоты Н=9,9 мм - внутреннего цилиндра 1 с радиусом Rвн=15,95 мм и наружного цилиндра 2 с радиусом Rнар=16 мм, до полного заполнения ее объема, рычаг 4 длиной L=87 мм поднимают в верхнее положение до ограничителя 7 и фиксируют скобой-фиксатором (не показана) через отверстие 9. Собранное устройство помещают в криогенную камеру ЕС2071 (не показана) с установленной температурой испытания -60°С. Для проведения измерения вязкости исследуемой жидкости вынимают скобу-фиксатор, освобождая рычаг 4, и осуществляют поворот наружного цилиндра 2 относительно внутреннего цилиндра 1 под действием груза 5 массой М=120 г, закрепленного на рычаге 4, связанном с наружным цилиндром 2, от верхнего ограничителя 7 до нижнего ограничителя 8 на угол от +α=30° до -α=30°; при этом через окно в криогенной камере наблюдают поворот рычага 6 и секундомером измеряют время поворота Т=80 с. После поворота в отверстие 10 вставляют скобу-фиксатор, закрепляя рычаг 4, и переворачивают устройство на 180° для следующего измерения. Затем по формуле (1) определяют вязкость исследуемой высоковязкой жидкости, которая в данном случае составит 1470 Па⋅с.


Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Способ определения вязкости высоковязких жидкостей и устройство для его реализации
Источник поступления информации: Портал edrid.ru

Showing 1-10 of 111 items.
19.01.2018
№218.016.00e2

Способ испытания пневмогидравлической системы

Изобретение относится к ракетно-космической технике и может быть применено в различных видах техники, где используется пневмогидравлическая система. Заявленный способ испытания пневмогидравлической системы включает подачу контрольного газа в пневмогидравлическую систему, контроль испытательного...
Тип: Изобретение
Номер охранного документа: 0002629697
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0105

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата (КА) относится к области дистанционного мониторинга природных и техногенных процессов. Способ наблюдения наземных объектов с движущегося по околокруговой орбите КА включает определение текущих...
Тип: Изобретение
Номер охранного документа: 0002629694
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dd9

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель. Криогенный бак окислителя снабжен каплеотражателем,...
Тип: Изобретение
Номер охранного документа: 0002640941
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.22c3

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в...
Тип: Изобретение
Номер охранного документа: 0002642166
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2438

Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Предложенный способ относится к области дистанционного мониторинга природных процессов, в частности роста и движения ледников. Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите КА включает определение текущих параметров орбиты, съемку с КА ледника и...
Тип: Изобретение
Номер охранного документа: 0002642544
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2aa2

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Электронасосный агрегат содержит корпус (1) и установленные в нем электродвигатель (4) и двухопорный полый вал (5) насоса с по крайней мере одним рабочим...
Тип: Изобретение
Номер охранного документа: 0002642877
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bb6

Способ определения параметров движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения параметров движения фронтальной части ледника. Сущность: с космического аппарата выполняют съемку ледника и неподвижных характерных наземных точек в моменты, взятые...
Тип: Изобретение
Номер охранного документа: 0002643224
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.3b52

Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости

Изобретение относится к космической технике, в частности к средствам фиксации в условиях невесомости элементов предметной среды, особенно инструментов. Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости выполнена с продольным сквозным пазом. В пазу...
Тип: Изобретение
Номер охранного документа: 0002647427
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
Showing 1-4 of 4 items.
27.06.2013
№216.012.50b1

Способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов для его реализации

Группа изобретений относится к микробиологии. Предложены способ качественной оценки биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и суспензия споровых материалов грибов для осуществления указанного способа....
Тип: Изобретение
Номер охранного документа: 0002486250
Дата охранного документа: 27.06.2013
13.01.2017
№217.015.86a4

Способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и имитационный состав для его реализации (варианты)

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений...
Тип: Изобретение
Номер охранного документа: 0002603797
Дата охранного документа: 27.11.2016
18.05.2019
№219.017.57e6

Устройство для прогнозирования остаточного ресурса и физико-механических свойств материала при неразрушающем контроле

Изобретение относится к области неразрушающего контроля при проведении экспертизы индустриальной безопасности промышленного оборудования. Технический результат направлен на увеличение количества диагностируемых объектов. Устройство предназначено для анализа объекта после естественной или...
Тип: Изобретение
Номер охранного документа: 0002338177
Дата охранного документа: 10.11.2008
08.12.2019
№219.017.eb7e

Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно больших сечений, в качестве конструкционного материала. Конструкционный...
Тип: Изобретение
Номер охранного документа: 0002708028
Дата охранного документа: 04.12.2019
+ добавить свой РИД