×
10.05.2018
218.016.4ff7

Результат интеллектуальной деятельности: Конструкционная деформируемая аустенитная немагнитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению конструкционных деформируемых аустенитных немагнитных теплостойких криогенных сталей, предназначенных для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики. Сталь содержит, мас.%: С: 1,3-1,5; Мn: 22-25; Ni: 4-6; Аl: 4-6; В: 0,003-0,010; Si: 0,3-0,5; Сr≤0,1; Сu≤0,05; N≤0,0020; Н≤0,0002; S≤0,0020; Р≤0,010; Sn, Pb, Bi и As не более 0,005 каждого; Fe – остальное. Сталь имеет стабильную аустенитную структуру в области температур от минус 100 до плюс 100°С и высокие прочность и пластичность. 2 н.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к металлургии конструкционных сталей, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, предназначено для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики.

Известна штампуемая сталь с низкой удельной массой и превосходной механической обрабатываемостью (RU 2484174 C1, опубл. 10.06.2013, Бюл. №16). Известная сталь содержит углерод, хром, марганец, кремний, алюминий, фосфор, серу, азот, железо и примеси при следующем соотношении, мас. %: С от 0,05 до 0,50%, Si от 0,01 до 1,50%, Mn от 3,0 до 7,0%, Р от 0,001 до 0,050%, S от 0,020 до 0,200%, Al от 3,0 до 6.0%, Cr от 0,01 до 1,00%, N от 0,0040 до 0,0200%, Fe и неизбежные примеси - остальное. Дополнительно сталь может содержать один или более из следующих элементов, мас. %: V от 0,05 до 0,30%, Nb от 0,05 до 0,30% и Ti от 0,005 до 0,050%. Сталь обладает высокой прочностью, более низкой удельной массой по сравнению с обычной штампуемой сталью и повышенной механической обрабатываемостью.

Недостатки этой стали заключаются в следующем.

Сталь имеет слишком широкий интервал содержания легирующих элементов, поэтому при температурах горячей штамповки будет иметь различные микроструктуру и штампуемость. Данная сталь при высоких содержаниях серы и фосфора не может показывать достаточно высоких прочности и пластичности, хотя и при ожидаемой хорошей обрабатываемости, а при минимальных в рекомендуемом интервале содержаниях этих элементов нельзя ожидать хорошей обрабатываемости. При всех рекомендуемых содержаниях азота нитриды алюминия будут образовываться в жидком состоянии при температурах выплавки стали. При содержаниях азота, близких к максимальным (0,0200%), количество нитридов алюминия будет слишком большим, что неизбежно повлияет отрицательно на свойства стали, если учесть возможное присутствие в стали Ti. Nb и V и образование карбонитридов и нитридов этих элементов, то можно ожидать при высоких их и азота концентрациях образование горячих трещин при деформации.

Прототипом предложенного изобретения является высокопрочная дуплекс/триплекс сталь для легких конструкций и ее применение (US 2007125454 (А1) опубл. 07.06.2007).

Изобретение относится к стали для легкого строительства, имеющей многофазную структуру. В случае дуплекс стали структура состоит из феррита (альфа) и аустенита (гамма) кристаллов. В случае триплекс стали структура состоит из феррита, аустенита и мартенсита (эпсилон) и/или (каппа) фазы. Сталь имеет низкую плотность <7 г/см3 благодаря высокому содержанию легких элементов Al, Mg, Ti, Si, Be, С. Сталь по патенту US 2007125454 (А1) имеет следующий состав, %: углерод 0,5-2, алюминий 8-12, кремний 3-6, сумма Al+Si>12, марганец 18-35, титан не больше 3, бор не больше 0,05. По крайней мере один из элементов Mg, Ga, Be не менее 0,3% в каждом случае и в сумме до 3%. Содержание ниобия и ванадия до 0,5%, азота до 0,3%.

Известная сталь может разливаться на установках непрерывной разливки при отливке тонких слябов или при отливке тонкого штрипса, может использоваться как литейная сталь, пригодна для горячей и холодной прокатки, глубокой вытяжки и формования растяжением. Горячая деформация производится при температурах выше температур рекристаллизации. После холодной прокатки требуется рекристаллизационный отжиг. В холоднокатаном и рекристаллизованном состоянии сталь имеет мелкозернистую равноосную микроструктуру, планарную изотропию и прочность при растяжении около 900 МПа, а максимальное удлинение 70%.

Недостатки этой стали заключаются в следующем.

Данная сталь имеет слишком широкий интервал содержаний основных структурообразующих элементов Mn, Al, и С. Поэтому при значительном числе комбинаций содержаний данных элементов химического состава, определяемых изобретением, не могут быть получены заявленные структуры α+γ или α+γ+ε(κ) и соответственно ожидаемые свойства стали. Так, например, при содержании 25% Mn, 10% А1 и заявленных содержаниях С при температуре ниже 500°C наряду с α и γ фазами могут выделяться карбиды марганца Mn5C2, Mn7C3, карбонитриды Ti, Nb и V в зависимости от режима охлаждения или термообработки после горячей деформации, которые в данном изобретении не регламентируются.

Сталь по патенту US 2007125454 (А1) содержит такие редкие и дорогостоящие элементы, как галлий и бериллий, при их содержаниях более 0,3% каждого, с учетом содержаний бора до 0,05%, ниобия до 0,5%, ванадия до 0,5% и титана до 3% сталь для промышленного производства неэкономична.

Данная сталь нетехнологична, так как обеспечение требуемых уровня и соотношения концентраций большого числа химически активных элементов Ti, Nb, Mg, Ga, Be, В и V технически сложно и при промышленном производстве трудно реализуемо, неизбежны непопадания в анализ по этим элементам и выпады свойств готового металла.

Недостатком способа термодеформационной обработки по патенту US 2007125454 (А1) является неполнота информации о температурах гомогенизации перед горячей прокаткой и температурном режиме охлаждения или термообработки после горячей деформации, что не позволяет без дополнительных исследований получить заявленную микроструктуру.

В предлагаемом изобретении достигается технический результат, заключающийся в получении конструкционной деформируемой аустенитной немагнитной теплостойкой криогенной стали с высокой удельной прочностью и в способе ее обработки, пригодной для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики при следующих ее характеристиках:

- сталь имеет стабильную аустенитную структуру в области температур от минус 100 до плюс 100°C и высокие прочность и пластичность. При комнатной температуре достигаются предел прочности при растяжении σв=700-1000 МПа и предел текучести σ0,2,=500-700 МПа.;

- после старения данной стали формируется триплекс структура γ + α + карбиды и достигаются следующие свойства: σв=900-1600 МПа, σ0,2=700-1000 МПа.

- данная сталь обладает технологичностью, так как имеет простой химсостав без большого числа химически активных микролегирующих элементов;

- данная сталь обладает экономичностью, так как в своем составе не имеет дорогостоящих элементов за исключением небольших содержаний никеля и бора.

Указанный технический результат в первом объекте изобретения достигается следующим образом.

Слиток из конструкционной деформируемой аустенитной немагнитной теплостойкой криогенной стали, содержащей углерод, марганец, алюминий, кремний, железо и примеси, в качестве которых она содержит азот, водород, серу, фосфор, хром, медь, олово, свинец, висмут и мышьяк, отличающийся тем, что сталь дополнительно содержит никель и бор при следующем соотношении компонентов, мас. %:

С 1,3-1,5 Mn 22-25

Ni 4-6

Al 4-6

В 0,003-0,010

Si 0,3-0,5

Cr≤0,1

Cu≤0.05

N≤0,0020

H≤0,0002

S≤0,0020

P≤0,010

Sn, Pb, Bi и As не более 0,005 каждого

Fe – остальное,

при этом содержание бора, обеспечивающее оптимальное количество боридов в марганец-никель-алюминиевой стали, выбирается из соотношения В=0,007-0,010% при содержании Mn=22-23% и В=0,003-0,006% при содержании Mn=24-25%.

Указанный технический результат во втором объекте изобретения достигается следующим образом.

Способ термодеформационной обработки слитка по п. 1, заключающийся в том, что осуществляют нагрев слитка до 1000-1150°C, выдержку при этих температурах в течение 3 часов, и его деформацию (прокатку, ковку, прессование) в этом интервале температур с суммарной степенью деформации 40-90% с получением заготовки, охлаждение заготовки на воздухе, зачистку, нагрев до температуры 1100-1000°C, горячую прокатку полученной заготовки в диапазоне температур 1100-1000°C с суммарной степенью обжатия 45-70% и заключительную горячую прокатку при температуре 1100-1000°C с суммарным обжатием более 30% и при обжатии более 15% в последнем проходе, после чего осуществляют ускоренное охлаждение проката до комнатной температуры со скоростью 20-100°C/с с обеспечением предела прочности при растяжении σВ=700-1000 МПа и предел текучести σ0,2=500-700 МПа».

Преимуществами предложенной в изобретении стали является то, что содержание основных структурообразующих элементов С, Mn, Al, Ni находится в узких пределах, благодаря чему для всех возможных при этом комбинаций химсостава равновесная структура стали ниже температуры солидуса и до 950°C состоит из γ-фазы, что гарантированно обеспечивает ее гомогенизацию при 1000-1150°C и получение при последующей термодеформационной обработке требуемой структуры, состоящей из пластичной γ фазы после закалки от температур гомогенизации и структуры с упрочняющими фазами γ + α + карбиды после старения при 500-550°C. Предлагаемая сталь отличается также высокой экономичностью, так как имеет небольшие содержания дорогостоящих элементов Ni и В, а также высокой технологичностью, так как сталь имеет простой химсостав без химически активных микролегирующих элементов.

Предлагаемая сталь отличается высокой чистотой по примесям, что уменьшает их ликвацию по границам зерен и способствует получению более однородной структуры.

Содержание углерода в пределах 1,3-1,5% способствует получению в стали аустенитной структуры, обеспечивает необходимое упрочнение стали в процессе термической обработки. При большем содержании углерода в стали уменьшается пластичность и коррозионная стойкость, возможно также выделение карбидов железа и марганца при температурах горячей деформации. При меньшем содержании углерода уменьшается прочность, при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре.

Марганец, никель и углерод в заданных пределах при содержании алюминия 4-6% масс. при всех возможных комбинациях содержаний этих элементов в области составов, определяемой изобретением, обеспечивают однофазную γ структуру стали ниже температуры солидуса и до 950°C, что гарантированно обеспечивает ее гомогенизацию при 1000-1150°C и получение при последующей термодеформационной обработке стали требуемой микроструктуры.

При содержании легирующих элементов Mn и Ni ниже заявляемого предела при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре. При большем содержании марганца вследствие уменьшения теплопроводности стали при затвердевании образуется грубая дендритная структура, не устраняющаяся при гомогенизации. Кроме того повышенное содержание марганца затрудняет процесс выплавки стали. Повышенное содержание Ni нежелательно, так как повышает себестоимость стали.

Алюминий в указанных пределах обеспечивает необходимую степень уменьшения плотности стали. При большем содержании алюминия не получается аустенитная структура при температурах гомогенизации 1000-1150°C. При меньшем содержании алюминия не обеспечивается требуемая степень уменьшения плотности стали.

Кремний в указанных пределах способствует более полному удалению неметаллических включений, а также способствует уменьшению плотности стали. При большем содержании кремния увеличивается вероятность появления α - фазы в области температур 1000-1100°C.

Присутствие в стали бора в количестве В=0,003-0,010% стабилизирует размер зерна за счет выделения боридов Mn2B и допускает нагрев металла для гомогенизации до более высокой температуры, что обеспечивает получение однородной аустенитной структуры при температурах 1000-1150°C. Меньшее содержание бора неэффективно, при большем содержании бора образуется слишком много избыточных фаз, что приводит к уменьшению пластичности стали и появлению горячих трещин. При заявленном отношении содержаний марганца и бора количество выделяющихся при кристаллизации стали боридов Mn2B оптимально для получения заданных свойств стали, так как при этих соотношениях бориды выделяются в основном в жидком металле в конце кристаллизации после образования около 80% твердой фазы, то есть концентрируются преимущественно в центре слитка и в междендритных пространствах, препятствуя росту зерна при рекристаллизации.

Присутствие примесей усложняет получение заданной структуры и свойств. Поэтому данная сталь должна выплавляться по технологии чистой стали. Требуемый по изобретению предел содержаний вредных примесей, % масс.: Р≤0,010, S≤0,0020, Sn≤0,005, Pb≤0,005, As≤0,005, Bi≤0,005, Cr≤0,1; Cu≤0.05; N≤0,0020; H≤0,0002 в стали обеспечивает наибольший при заданном составе уровень свойств. При большем содержании примесей проявляется их отрицательное влияние на структуру и свойства стали и процессы структурообразования. Существенно меньшее содержание примесей в настоящее время технологически трудно реализуемо. Особенно важно для марганец-никель-алюминиевой стали, чтобы содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов было не более 0.0020% каждого.

При способе термообработки по изобретению сталь получает после гомогенизации чисто аустенитную структуру, а после старения γ + α + карбиды требуемую многофазную структуру.

При несоблюдении режимов нагрева при гомогенизации и термообработке после гомогенизации получение заявленной по изобретению структуры и соответствующих свойств невозможно.

Пример реализации выплавки и обработки стали

В опытном порядке сталь заявленного состава была выплавлена в вакуумной индукционной печи вместимостью 50 кг по жидкому металлу. Использовали чистые шихтовые материалы: железо 008ЖР, электролитический марганец, электролитический никель, гранулированный чистый алюминий, графит. После легирования и перемешивания расплава с целью его усреднения отливали слиток. Полученный слиток после зачистки нагревали до температуры 1100°C и проводили гомогенизацию при этой температуре, затем охлаждение - на воздухе до температуры 700°C, далее - в воде. Температура нагрева под ковку составила 1100°C, ковку проводили при температуре 1100-1000°C с промежуточным подогревом до толщины 35 мм. Горячую прокатку металла проводили при 1100-1050°C на стане 300 от толщины 35 мм до 10, 6 и 4 мм за несколько проходов. Степень деформации в каждом проходе 30%, между проходами проводили промежуточный подогрев металла, после конца прокатки окончательное охлаждение проката проводили со скоростью 100°C/с водой. Испытание стали на одноосное статическое растяжение по ГОСТ 1497 в горячекатаном состоянии проводили на пропорциональных плоских образцах, изготовленных из пластин толщиной 4 мм. Химический состав полученной стали представлен в таблице 1.

Механические свойства полученного металла представлены в таблице 2.

Для старения пробы нагревали до 540°C, выдерживали при этой температуре 2 часа и затем охлаждали на воздухе до комнатной температуры. После старения получили требуемые структуру γ + α + карбиды и свойства: σB=1400 МПа, σ0,2=760 МПа.

Источник поступления информации: Роспатент

Showing 91-100 of 322 items.
25.08.2017
№217.015.c6de

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, позволяющее снизить температуру...
Тип: Изобретение
Номер охранного документа: 0002618781
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c74b

Способ контроля напряженного состояния массива горных пород в окрестности выработки

Способ контроля напряженного состояния массива горных пород предназначен для определения пространственного распределения напряжений в окрестности горной выработки и глубины максимума зоны опорного давления. Для этого осуществляют прозвучивание ультразвуковыми стационарными шумовыми сигналами со...
Тип: Изобретение
Номер охранного документа: 0002618778
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c85e

Способ приготовления катализатора для получения синтез газа из метана, катализатор, приготовленный по этому способу, и способ получения синтез газа из метана с его использованием

Изобретение относится к способу приготовления катализатора для получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Способ приготовления катализатора для получения синтез-газа из метана включает носитель и нанесенные на его...
Тип: Изобретение
Номер охранного документа: 0002619104
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.d045

Рабочее тело на основе магнитоактивных и пьезоактивных материалов для магнитных твердотельных тепловых насосов

Изобретение относится к области холодильной и криогенной техники. Рабочее тело с применением магнитокалорического эффекта в твердотельных тепловых насосах содержит хладагент, выполненный из материала с гигантским магнитокалорическим эффектом, и, по меньшей мере, один пьезоэлектрический...
Тип: Изобретение
Номер охранного документа: 0002621192
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d081

Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками для повышения электропроводности полимерматричных композитов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны...
Тип: Изобретение
Номер охранного документа: 0002621335
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d1ef

Способ получения отливок из высокопрочного сплава на основе алюминия

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и...
Тип: Изобретение
Номер охранного документа: 0002621499
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d22c

Интерметаллический сплав на основе tial

Изобретение относится к области металлургии, в частности легированным сплавам на основе TiAl с преобладающей фазой γ-TiAl, и может быть использовано при изготовлении компонентов авиационных газотурбинных двигателей. Сплав на основе TiAl содержит, ат.%: алюминий 44-47, ниобий 5-8, хром 1-3,...
Тип: Изобретение
Номер охранного документа: 0002621500
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3bc

Катализатор и способ получения синтез-газа из метана с его использованием

Изобретение относится к группе изобретений, включающей катализатор и способ получения синтез-газа из газообразного углеводородного сырья, например природного газа или попутных нефтяных газов. Катализатор для получения синтез-газа из метана получен на основе керамического носителя с...
Тип: Изобретение
Номер охранного документа: 0002621689
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d492

Способ получения прутков из высокопрочного алюминиевого сплава

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002622199
Дата охранного документа: 13.06.2017
Showing 21-30 of 30 items.
29.03.2019
№219.016.f380

Псевдоупругий биосовместимый функционально-градиентный материал для костных имплантов и способ его получения

Изобретение относится к области ортопедической импланталогии и может быть использовано для изготовления имплантатов (штифтов), внедряемых в костную ткань. Псевдоупругий биосовместимый функционально-градиентный материал для костных имплантов в объеме состоит из сплава титана, ниобия и тантала,...
Тип: Изобретение
Номер охранного документа: 0002302261
Дата охранного документа: 10.07.2007
09.05.2019
№219.017.4ed4

Способ охлаждения заготовок на машинах непрерывного литья

Изобретение относится к металлургии. Способ включает разделение зоны вторичного охлаждения на подзоны и определение расхода охлаждающей воды по каждой подзоне. Расход охлаждающей воды определяют в зависимости от коэффициента теплоотдачи по времени на поверхности заготовки, температуры...
Тип: Изобретение
Номер охранного документа: 0002422242
Дата охранного документа: 27.06.2011
14.05.2019
№219.017.51ca

Литейный магниевый сплав

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 250°С и кратковременно при температурах до 300°С....
Тип: Изобретение
Номер охранного документа: 0002687359
Дата охранного документа: 13.05.2019
17.05.2019
№219.017.5354

Способ дентальной имплантации

Изобретение относится к медицине, а именной к хирургической и ортопедической стоматологии, и предназначено для использования при зубном протезировании пациентов с частичным или полным отсутствием зубов. Осуществляют местную анестезию, адекватную проводимой операции. Проводят разрез. Формируют...
Тип: Изобретение
Номер охранного документа: 0002687581
Дата охранного документа: 15.05.2019
06.06.2019
№219.017.7458

Стоматологический имплантат

Изобретение относится к медицине, а именно к хирургической и ортопедической стоматологии, и может быть использовано для зубного протезирования пациентов с частичным или полным отсутствием зубов. Стоматологический имплантат состоит из внутрикостной и наддесневой частей. Внутрикостная часть...
Тип: Изобретение
Номер охранного документа: 0002690594
Дата охранного документа: 04.06.2019
05.02.2020
№220.017.fe91

Способ изготовления керамических плавильных тиглей

Изобретение относится к производству плавильных тиглей и может быть использовано при работе с жаропрочными и химически активными сплавами. Огнеупорные шихтовые материалы смешивают с парафинсодержащей связкой и из полученной массы формуют тигель в металлической форме. В соответствии с заявленным...
Тип: Изобретение
Номер охранного документа: 0002713049
Дата охранного документа: 03.02.2020
17.04.2020
№220.018.1567

Способ заделки дефектов в литых деталях из магниевых сплавов

Изобретение относится к области металлургии, в частности к способам устранения пористости и восстановления герметичности в фасонных отливках из магниевых сплавов. Способ включает нанесение жидкого легкоплавкого металлического сплава на основе галлия при комнатной температуре на поверхность...
Тип: Изобретение
Номер охранного документа: 0002718807
Дата охранного документа: 14.04.2020
12.04.2023
№223.018.43c2

Магниевый сплав и способ получения заготовок для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине

Изобретение относится к области металлургии, конкретно к сплавам на основе магния, а также к получению из них деформируемых заготовок, и может быть использовано для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине. Магниевый сплав содержит, мас.%: галлий...
Тип: Изобретение
Номер охранного документа: 0002793655
Дата охранного документа: 04.04.2023
27.05.2023
№223.018.714a

Способ изготовления заготовок из антифрикционной бронзы литьем с последующей экструзией

Изобретение относится к металлургии цветных металлов, в частности к получению литых заготовок из антифрикционных оловянно-свинцовых бронз типа БрО10С2Н3. Осуществляют экструдирование заготовок на вертикальном или горизонтальном гидравлическом прессе методом прямого прессования со скоростью 1-5...
Тип: Изобретение
Номер охранного документа: 0002760688
Дата охранного документа: 29.11.2021
27.05.2023
№223.018.715a

Способ изготовления литых заготовок из антифрикционной бронзы

Изобретение относится к области металлургии, в частности к способам получения литых заготовок из антифрикционных оловянно-свинцовых бронз, предназначенных для диффузионной сварки со сталью для создания узлов трения средней нагрузки и скоростей скольжения. Способ изготовления литых заготовок из...
Тип: Изобретение
Номер охранного документа: 0002762956
Дата охранного документа: 24.12.2021
+ добавить свой РИД