×
10.05.2018
218.016.4ff7

Результат интеллектуальной деятельности: Конструкционная деформируемая аустенитная немагнитная теплостойкая криогенная сталь с высокой удельной прочностью и способ ее обработки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению конструкционных деформируемых аустенитных немагнитных теплостойких криогенных сталей, предназначенных для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики. Сталь содержит, мас.%: С: 1,3-1,5; Мn: 22-25; Ni: 4-6; Аl: 4-6; В: 0,003-0,010; Si: 0,3-0,5; Сr≤0,1; Сu≤0,05; N≤0,0020; Н≤0,0002; S≤0,0020; Р≤0,010; Sn, Pb, Bi и As не более 0,005 каждого; Fe – остальное. Сталь имеет стабильную аустенитную структуру в области температур от минус 100 до плюс 100°С и высокие прочность и пластичность. 2 н.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к металлургии конструкционных сталей, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов, предназначено для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики.

Известна штампуемая сталь с низкой удельной массой и превосходной механической обрабатываемостью (RU 2484174 C1, опубл. 10.06.2013, Бюл. №16). Известная сталь содержит углерод, хром, марганец, кремний, алюминий, фосфор, серу, азот, железо и примеси при следующем соотношении, мас. %: С от 0,05 до 0,50%, Si от 0,01 до 1,50%, Mn от 3,0 до 7,0%, Р от 0,001 до 0,050%, S от 0,020 до 0,200%, Al от 3,0 до 6.0%, Cr от 0,01 до 1,00%, N от 0,0040 до 0,0200%, Fe и неизбежные примеси - остальное. Дополнительно сталь может содержать один или более из следующих элементов, мас. %: V от 0,05 до 0,30%, Nb от 0,05 до 0,30% и Ti от 0,005 до 0,050%. Сталь обладает высокой прочностью, более низкой удельной массой по сравнению с обычной штампуемой сталью и повышенной механической обрабатываемостью.

Недостатки этой стали заключаются в следующем.

Сталь имеет слишком широкий интервал содержания легирующих элементов, поэтому при температурах горячей штамповки будет иметь различные микроструктуру и штампуемость. Данная сталь при высоких содержаниях серы и фосфора не может показывать достаточно высоких прочности и пластичности, хотя и при ожидаемой хорошей обрабатываемости, а при минимальных в рекомендуемом интервале содержаниях этих элементов нельзя ожидать хорошей обрабатываемости. При всех рекомендуемых содержаниях азота нитриды алюминия будут образовываться в жидком состоянии при температурах выплавки стали. При содержаниях азота, близких к максимальным (0,0200%), количество нитридов алюминия будет слишком большим, что неизбежно повлияет отрицательно на свойства стали, если учесть возможное присутствие в стали Ti. Nb и V и образование карбонитридов и нитридов этих элементов, то можно ожидать при высоких их и азота концентрациях образование горячих трещин при деформации.

Прототипом предложенного изобретения является высокопрочная дуплекс/триплекс сталь для легких конструкций и ее применение (US 2007125454 (А1) опубл. 07.06.2007).

Изобретение относится к стали для легкого строительства, имеющей многофазную структуру. В случае дуплекс стали структура состоит из феррита (альфа) и аустенита (гамма) кристаллов. В случае триплекс стали структура состоит из феррита, аустенита и мартенсита (эпсилон) и/или (каппа) фазы. Сталь имеет низкую плотность <7 г/см3 благодаря высокому содержанию легких элементов Al, Mg, Ti, Si, Be, С. Сталь по патенту US 2007125454 (А1) имеет следующий состав, %: углерод 0,5-2, алюминий 8-12, кремний 3-6, сумма Al+Si>12, марганец 18-35, титан не больше 3, бор не больше 0,05. По крайней мере один из элементов Mg, Ga, Be не менее 0,3% в каждом случае и в сумме до 3%. Содержание ниобия и ванадия до 0,5%, азота до 0,3%.

Известная сталь может разливаться на установках непрерывной разливки при отливке тонких слябов или при отливке тонкого штрипса, может использоваться как литейная сталь, пригодна для горячей и холодной прокатки, глубокой вытяжки и формования растяжением. Горячая деформация производится при температурах выше температур рекристаллизации. После холодной прокатки требуется рекристаллизационный отжиг. В холоднокатаном и рекристаллизованном состоянии сталь имеет мелкозернистую равноосную микроструктуру, планарную изотропию и прочность при растяжении около 900 МПа, а максимальное удлинение 70%.

Недостатки этой стали заключаются в следующем.

Данная сталь имеет слишком широкий интервал содержаний основных структурообразующих элементов Mn, Al, и С. Поэтому при значительном числе комбинаций содержаний данных элементов химического состава, определяемых изобретением, не могут быть получены заявленные структуры α+γ или α+γ+ε(κ) и соответственно ожидаемые свойства стали. Так, например, при содержании 25% Mn, 10% А1 и заявленных содержаниях С при температуре ниже 500°C наряду с α и γ фазами могут выделяться карбиды марганца Mn5C2, Mn7C3, карбонитриды Ti, Nb и V в зависимости от режима охлаждения или термообработки после горячей деформации, которые в данном изобретении не регламентируются.

Сталь по патенту US 2007125454 (А1) содержит такие редкие и дорогостоящие элементы, как галлий и бериллий, при их содержаниях более 0,3% каждого, с учетом содержаний бора до 0,05%, ниобия до 0,5%, ванадия до 0,5% и титана до 3% сталь для промышленного производства неэкономична.

Данная сталь нетехнологична, так как обеспечение требуемых уровня и соотношения концентраций большого числа химически активных элементов Ti, Nb, Mg, Ga, Be, В и V технически сложно и при промышленном производстве трудно реализуемо, неизбежны непопадания в анализ по этим элементам и выпады свойств готового металла.

Недостатком способа термодеформационной обработки по патенту US 2007125454 (А1) является неполнота информации о температурах гомогенизации перед горячей прокаткой и температурном режиме охлаждения или термообработки после горячей деформации, что не позволяет без дополнительных исследований получить заявленную микроструктуру.

В предлагаемом изобретении достигается технический результат, заключающийся в получении конструкционной деформируемой аустенитной немагнитной теплостойкой криогенной стали с высокой удельной прочностью и в способе ее обработки, пригодной для различных отраслей промышленности, в том числе для изготовления легких узлов и конструкций в транспортном машиностроении, в криогенной технике и для работы в условиях Арктики при следующих ее характеристиках:

- сталь имеет стабильную аустенитную структуру в области температур от минус 100 до плюс 100°C и высокие прочность и пластичность. При комнатной температуре достигаются предел прочности при растяжении σв=700-1000 МПа и предел текучести σ0,2,=500-700 МПа.;

- после старения данной стали формируется триплекс структура γ + α + карбиды и достигаются следующие свойства: σв=900-1600 МПа, σ0,2=700-1000 МПа.

- данная сталь обладает технологичностью, так как имеет простой химсостав без большого числа химически активных микролегирующих элементов;

- данная сталь обладает экономичностью, так как в своем составе не имеет дорогостоящих элементов за исключением небольших содержаний никеля и бора.

Указанный технический результат в первом объекте изобретения достигается следующим образом.

Слиток из конструкционной деформируемой аустенитной немагнитной теплостойкой криогенной стали, содержащей углерод, марганец, алюминий, кремний, железо и примеси, в качестве которых она содержит азот, водород, серу, фосфор, хром, медь, олово, свинец, висмут и мышьяк, отличающийся тем, что сталь дополнительно содержит никель и бор при следующем соотношении компонентов, мас. %:

С 1,3-1,5 Mn 22-25

Ni 4-6

Al 4-6

В 0,003-0,010

Si 0,3-0,5

Cr≤0,1

Cu≤0.05

N≤0,0020

H≤0,0002

S≤0,0020

P≤0,010

Sn, Pb, Bi и As не более 0,005 каждого

Fe – остальное,

при этом содержание бора, обеспечивающее оптимальное количество боридов в марганец-никель-алюминиевой стали, выбирается из соотношения В=0,007-0,010% при содержании Mn=22-23% и В=0,003-0,006% при содержании Mn=24-25%.

Указанный технический результат во втором объекте изобретения достигается следующим образом.

Способ термодеформационной обработки слитка по п. 1, заключающийся в том, что осуществляют нагрев слитка до 1000-1150°C, выдержку при этих температурах в течение 3 часов, и его деформацию (прокатку, ковку, прессование) в этом интервале температур с суммарной степенью деформации 40-90% с получением заготовки, охлаждение заготовки на воздухе, зачистку, нагрев до температуры 1100-1000°C, горячую прокатку полученной заготовки в диапазоне температур 1100-1000°C с суммарной степенью обжатия 45-70% и заключительную горячую прокатку при температуре 1100-1000°C с суммарным обжатием более 30% и при обжатии более 15% в последнем проходе, после чего осуществляют ускоренное охлаждение проката до комнатной температуры со скоростью 20-100°C/с с обеспечением предела прочности при растяжении σВ=700-1000 МПа и предел текучести σ0,2=500-700 МПа».

Преимуществами предложенной в изобретении стали является то, что содержание основных структурообразующих элементов С, Mn, Al, Ni находится в узких пределах, благодаря чему для всех возможных при этом комбинаций химсостава равновесная структура стали ниже температуры солидуса и до 950°C состоит из γ-фазы, что гарантированно обеспечивает ее гомогенизацию при 1000-1150°C и получение при последующей термодеформационной обработке требуемой структуры, состоящей из пластичной γ фазы после закалки от температур гомогенизации и структуры с упрочняющими фазами γ + α + карбиды после старения при 500-550°C. Предлагаемая сталь отличается также высокой экономичностью, так как имеет небольшие содержания дорогостоящих элементов Ni и В, а также высокой технологичностью, так как сталь имеет простой химсостав без химически активных микролегирующих элементов.

Предлагаемая сталь отличается высокой чистотой по примесям, что уменьшает их ликвацию по границам зерен и способствует получению более однородной структуры.

Содержание углерода в пределах 1,3-1,5% способствует получению в стали аустенитной структуры, обеспечивает необходимое упрочнение стали в процессе термической обработки. При большем содержании углерода в стали уменьшается пластичность и коррозионная стойкость, возможно также выделение карбидов железа и марганца при температурах горячей деформации. При меньшем содержании углерода уменьшается прочность, при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре.

Марганец, никель и углерод в заданных пределах при содержании алюминия 4-6% масс. при всех возможных комбинациях содержаний этих элементов в области составов, определяемой изобретением, обеспечивают однофазную γ структуру стали ниже температуры солидуса и до 950°C, что гарантированно обеспечивает ее гомогенизацию при 1000-1150°C и получение при последующей термодеформационной обработке стали требуемой микроструктуры.

При содержании легирующих элементов Mn и Ni ниже заявляемого предела при кристаллизации образуется δ-феррит, который не трансформируется при гомогенизации и остается в конечной структуре. При большем содержании марганца вследствие уменьшения теплопроводности стали при затвердевании образуется грубая дендритная структура, не устраняющаяся при гомогенизации. Кроме того повышенное содержание марганца затрудняет процесс выплавки стали. Повышенное содержание Ni нежелательно, так как повышает себестоимость стали.

Алюминий в указанных пределах обеспечивает необходимую степень уменьшения плотности стали. При большем содержании алюминия не получается аустенитная структура при температурах гомогенизации 1000-1150°C. При меньшем содержании алюминия не обеспечивается требуемая степень уменьшения плотности стали.

Кремний в указанных пределах способствует более полному удалению неметаллических включений, а также способствует уменьшению плотности стали. При большем содержании кремния увеличивается вероятность появления α - фазы в области температур 1000-1100°C.

Присутствие в стали бора в количестве В=0,003-0,010% стабилизирует размер зерна за счет выделения боридов Mn2B и допускает нагрев металла для гомогенизации до более высокой температуры, что обеспечивает получение однородной аустенитной структуры при температурах 1000-1150°C. Меньшее содержание бора неэффективно, при большем содержании бора образуется слишком много избыточных фаз, что приводит к уменьшению пластичности стали и появлению горячих трещин. При заявленном отношении содержаний марганца и бора количество выделяющихся при кристаллизации стали боридов Mn2B оптимально для получения заданных свойств стали, так как при этих соотношениях бориды выделяются в основном в жидком металле в конце кристаллизации после образования около 80% твердой фазы, то есть концентрируются преимущественно в центре слитка и в междендритных пространствах, препятствуя росту зерна при рекристаллизации.

Присутствие примесей усложняет получение заданной структуры и свойств. Поэтому данная сталь должна выплавляться по технологии чистой стали. Требуемый по изобретению предел содержаний вредных примесей, % масс.: Р≤0,010, S≤0,0020, Sn≤0,005, Pb≤0,005, As≤0,005, Bi≤0,005, Cr≤0,1; Cu≤0.05; N≤0,0020; H≤0,0002 в стали обеспечивает наибольший при заданном составе уровень свойств. При большем содержании примесей проявляется их отрицательное влияние на структуру и свойства стали и процессы структурообразования. Существенно меньшее содержание примесей в настоящее время технологически трудно реализуемо. Особенно важно для марганец-никель-алюминиевой стали, чтобы содержание азота и серы, обеспечивающее минимальное количество нитридов и сульфидов было не более 0.0020% каждого.

При способе термообработки по изобретению сталь получает после гомогенизации чисто аустенитную структуру, а после старения γ + α + карбиды требуемую многофазную структуру.

При несоблюдении режимов нагрева при гомогенизации и термообработке после гомогенизации получение заявленной по изобретению структуры и соответствующих свойств невозможно.

Пример реализации выплавки и обработки стали

В опытном порядке сталь заявленного состава была выплавлена в вакуумной индукционной печи вместимостью 50 кг по жидкому металлу. Использовали чистые шихтовые материалы: железо 008ЖР, электролитический марганец, электролитический никель, гранулированный чистый алюминий, графит. После легирования и перемешивания расплава с целью его усреднения отливали слиток. Полученный слиток после зачистки нагревали до температуры 1100°C и проводили гомогенизацию при этой температуре, затем охлаждение - на воздухе до температуры 700°C, далее - в воде. Температура нагрева под ковку составила 1100°C, ковку проводили при температуре 1100-1000°C с промежуточным подогревом до толщины 35 мм. Горячую прокатку металла проводили при 1100-1050°C на стане 300 от толщины 35 мм до 10, 6 и 4 мм за несколько проходов. Степень деформации в каждом проходе 30%, между проходами проводили промежуточный подогрев металла, после конца прокатки окончательное охлаждение проката проводили со скоростью 100°C/с водой. Испытание стали на одноосное статическое растяжение по ГОСТ 1497 в горячекатаном состоянии проводили на пропорциональных плоских образцах, изготовленных из пластин толщиной 4 мм. Химический состав полученной стали представлен в таблице 1.

Механические свойства полученного металла представлены в таблице 2.

Для старения пробы нагревали до 540°C, выдерживали при этой температуре 2 часа и затем охлаждали на воздухе до комнатной температуры. После старения получили требуемые структуру γ + α + карбиды и свойства: σB=1400 МПа, σ0,2=760 МПа.

Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 30 items.
20.06.2013
№216.012.4c9f

Металлический наноструктурный сплав на основе титана и способ его обработки

Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии. Заявлены сплав на основе титана с эффектом...
Тип: Изобретение
Номер охранного документа: 0002485197
Дата охранного документа: 20.06.2013
10.01.2015
№216.013.171e

Способ электролитно-плазменной обработки поверхности металлов

Изобретение относится к электролитно-плазменной обработке поверхности металлов. Способ включает полировку детали из медьсодержащего сплава в электролите, используемой в качестве анода, и синхронное нанесение медного покрытия на стальную деталь, которую используют в качестве катода. На катод и...
Тип: Изобретение
Номер охранного документа: 0002537346
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3820

Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионно-стойкой криогенной аустенитной высокопрочной свариваемой стали, предназначенной для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь...
Тип: Изобретение
Номер охранного документа: 0002545856
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.49c6

Способ электролитно-плазменной обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в различных областях техники, в частности в машиностроении, в электротехнической промышленности, в приборостроении и в декоративных целях при производстве товаров народного потребления. Способ характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002550393
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.49f1

Способ обработки поверхности металлов

Изобретение относится к области гальванотехники и может быть использовано в электротехнической промышленности, в приборостроении и для декоративных целей при производстве товаров народного потребления. Способ характеризуется тем, что анод из серебра и серебряных сплавов и металлический катод...
Тип: Изобретение
Номер охранного документа: 0002550436
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.50a6

Способ компьютерного проектирования технологического цикла производства металлопродукции

Изобретение относится к компьютерному проектированию технологического процесса производства металлоизделий, состоящего из последовательности процессов: получения заготовки литьем, обработки давлением и термообработки литой заготовки. Технический результат - повышение вариативности...
Тип: Изобретение
Номер охранного документа: 0002552167
Дата охранного документа: 10.06.2015
20.11.2015
№216.013.8f6c

Измерительный инструмент для контроля радиуса кривизны цилиндрических поверхностей бесконечной длины

Изобретение относится к устройствам для определения радиусов кривизны цилиндрических поверхностей бесконечной длины и может быть применено для мониторинга состояния рабочих поверхностей железнодорожного рельса, например в условиях открытых горных работ. Для измерения радиуса кривизны...
Тип: Изобретение
Номер охранного документа: 0002568332
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.9676

Литниковая система для центробежного фасонного литья с вертикальной осью вращения

Изобретение относится к литейному производству, в частности к получению тонкостенных отливок с толщиной стенки 2,5-3,5 мм, диаметром более 1000 мм, из титановых и жаропрочных сплавов, с разноудаленными от оси кольцевыми поверхностями 8, соединенными между собой радиальными ребрами 9. Литниковая...
Тип: Изобретение
Номер охранного документа: 0002570138
Дата охранного документа: 10.12.2015
27.03.2016
№216.014.c62c

Способ электролитической очистки от окалины ленточного проката

Изобретение относится к металлургическому производству и к электролитической обработке металлов и может быть использовано для снятия оксидных пленок металлов - оксида железа, гематита, магнетита, окалины, образующихся при холодной и горячей прокатке и при термообработке. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002578623
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.35c0

Способ удаления окалины с поверхности плоского проката в электролите

Изобретение относится к области электролитической обработки металлов и может быть использовано для снятия оксидных пленок металлов, образующихся при холодной и горячей прокатке, а также при термообработке и коррозии металлов. Способ включает протягивание ленты через электролитическую ванну с...
Тип: Изобретение
Номер охранного документа: 0002581957
Дата охранного документа: 20.04.2016
+ добавить свой РИД