×
10.05.2018
218.016.4e5c

Результат интеллектуальной деятельности: СПОСОБ УДАЛЕНИЯ ОСТАТОЧНОГО АЛЮМИНИЯ ИЗ СКЕЛЕТНОГО НИКЕЛЕВОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к химической промышленности, к способам получения и применения скелетных катализаторов на основе никеля в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров. Способ заключается в циклической обработке гидрируемым соединением в водном растворе гидроксида натрия 25%, в среде водорода при температуре 55-65°С. При этом скелетный никелевый катализатор помещают в реактор гидрогенизации в растворе гидроксида натрия, при соотношении и объема катализатора (см) при ρ=4,5 г/см, объема щелочи (см) при ω=25%, объема реактора (см) - (1,1-3,3):(50-150):(300-400); герметизируют реактор; насыщают атмосферу водородом; вводят в избытке гидрируемое соединение (в качестве которого используют, например, или малеат натрия, или пропен-2-ол-1, или пероксид водорода), в количестве, достаточном для присоединения водорода на каждом грамме катализатора, - V/m - 20-60 см/г; перемешивают при частоте вращения 1500-3500 об/мин; при этом количество повторов таких циклов: для малеата натрия - 2, для пропен-2-ол-1 - 4, для пероксида водорода - 3. Технический результат заключается в упрощении способа, расширении класса веществ, которые возможно использовать для окисления алюминия, удешевлении процесса получения. 1 табл., 10 пр.

Изобретение относится к химической промышленности, к способам получения и применения скелетных катализаторов на основе никеля в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров.

Остаточный алюминий обладает высокой реакционной способностью, что обуславливает возможность его растворения и протекания побочных процессов в реакциях жидкофазной гидрогенизации.

Наиболее распространенным способом получения пористых дисперсных катализаторов является выщелачивание сплава каталитически активного металла с алюминием.

Наиболее близким по сущности и техническому результату является способ удаления остаточного алюминия из скелетного никелевого катализатора, заключающийся в обработке никелевого катализатора в среде 6-8М водного раствора щелочи при 50-75°С при циклическом вводе пероксида водорода в среде аргона с последующим восстановлением в среде водорода [Патент SU 1664398 А1, МПК В01J 25/02. Способ удаления остаточного алюминия из скелетного никелевого катализатора / Гостикин В.П., Улитин М.В., Барбов А.В.; заявитель и патентообладатель Ивановский химико-технологический институт. - Заявка №4745353, 22.08.1989; опубл. 23.07.1991].

Указанный способ обладает рядом недостатков, которые заключаются в следующем: трудоемок (требует большее число технологических операций); необходим инертный газ; используется такой сильный окислитель, как пероксид водорода, растворы которого не стабильны и могут быть взрывоопасны, поэтому для его стабилизации используются различные добавки, нарушающие чистоту системы.

Задачей настоящего изобретения является получение более простым способом скелетного никелевого катализатора без поверхностного активного алюминия. При этом общее количество алюминия должно быть равным или меньшим, чем в прототипе.

Технический результат - упрощение способа получения, расширение класса веществ, которые возможно использовать для окисления алюминия, удешевление процесса получения.

Указанный результат достигается тем, что в способе удаления остаточного алюминия из скелетного никелевого катализатора, заключающемся в циклической обработке гидрируемым соединением в водном растворе гидроксида натрия 25%, в среде водорода при температуре 55-65°С, согласно изобретению скелетный никелевый катализатор помещают в реактор гидрогенизации в растворе гидроксида натрия при соотношении объема катализатора (см3) при ρ=4,5 г/см3, объема щелочи (см3) при ω=25%, объема реактора (см3) - (1,1-3,3):(50-150):(300-400); герметизируют реактор; насыщают атмосферу водородом; вводят в избытке гидрируемое соединение (в качестве которого используют, например, или малеат натрия, или пропен-2-ол-1, или пероксид водорода), в количестве, достаточном для присоединения водорода на каждом грамме катализатора, - VН2/mkt - 20-60 см3/г; перемешивают при частоте вращения 1500-3500 об/мин; при этом количество повторов таких циклов: для малеата натрия - 2, для пропен-2-ол-1 - 4, для пероксида водорода - 3.

Технический результат достигается за счет уменьшения числа операций приготовления, что упрощает и удешевляет процесс, проведение процесса без использования инертного газа, более точное установление режимов, расширение спектра веществ, которые можно использовать.

Для осуществления изобретения используют следующие вещества:

1. Водород электролитический марки Б ГОСТ 3022-80.

2. Аргон марки Б с содержанием основного компонента 99,99%.

3. Водный раствор гидроксида натрия (ω=25%), полученный из сухого гидроксида натрия марки "х.ч.".

4. Малеат натрия, полученный нейтрализацией водных растворов малеиновой кислоты марки "х.ч." гидроксидом натрия марки "х.ч." до рН, равного раствору гидроксида натрия (ω=25%).

5. Пропен-2-ол-1 марки "х.ч."

6. Водный раствор пероксида водорода (ω=10,49%) марки "х.ч."

Выбор гидрируемых веществ (малеат натрия, пропен-2-ол-1, пероксид водорода) обусловлен следующими причинами:

1. Относительно доступны

2. Продукты их гидрирования легко удаляются при отмывке катализатора от гидроксида натрия.

3. При их использовании требуется минимальное число циклов обработки катализатора.

Способ осуществляют следующим образом:

Пример 1

В реактор жидкофазной гидрогенизации (300 см3) загружают 5 г (v(катализатора)=1,1 см3) скелетного никеля со средним радиусом частиц 4,8 мкм и 100 см3 водного раствора гидроксида натрия 25%. Содержание остаточного алюминия в катализаторе составляет ω(Al)=11,7%. Реактор термостатируют при 60°С, продувают водородом, при перемешивании (2000 об/мин) катализатор обрабатывают 8,93⋅10-3 моль малеата натрия (V(NaMal)=10 см3, C(NaMal)=8,93⋅10-4 моль/см3, VH2/mkt=40 см3/г). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 20 мин, после чего повторно вводят 8,93⋅10-3 моль малеата натрия (V(NaMal)=10 см3, C(NaMal)=8,93⋅10-4 моль/см3). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 20 мин, после чего выключают мешалку, извлекают готовый катализатор.

Пример 2

В реактор жидкофазной гидрогенизации (300 см3) загружают 1,1 см3 скелетного никеля (как и в примере 1) и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 60°С, продувают водородом, при перемешивании (2000 об/мин) катализатор обрабатывают 8,93⋅10-3 моль пропен-2-ол-1 (V(пропен-2-ол-1)=0,6 см3, ρ=0.854 г/см3, VH2/mkt=40 см3/г). Сразу после введения пропен-2-ол-1 начинается поглощение водорода, которое заканчивается через 30 мин, после чего повторно вводят пропен-2-ол-1. Через 35 мин осуществляют третье введение пропен-2-ол-1. Через 35 минут осуществляют четвертое введение пропен-2-ол-1. Через 35 мин выключают мешалку, извлекают готовый катализатор.

Пример 3

В реактор жидкофазной гидрогенизации (300 см3) загружают 1,1 см3 скелетного никеля (как и в примере 1) и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 60°С, продувают водородом, при перемешивании (2000 об/мин) катализатор обрабатывают 8,93⋅10-3 моль пероксида водорода (V(H2O2)=3 см3, ω(Н2O2)=10,49%, VH2/mkt=40 см3/г). Сразу после введения Н2O2 начинается поглощение водорода, которое заканчивается через 30 мин, после чего повторно вводят Н2O2. Через 30 минут осуществляют третье введение Н2O2. Через 30 мин выключают мешалку, извлекают готовый катализатор.

Пример 4

В реактор жидкофазной гидрогенизации (300 см3) загружают 1,1 см3 скелетного никеля со средним радиусом частиц 4,8 мкм и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 60°С, продувают водородом, при перемешивании (2000 об/мин) катализатор обрабатывают 4,47⋅10-3 моль малеата натрия (V(NaMal)=5 см3, C(NaMal)=8,93⋅10-4 моль/см3, VH2/mkt=20 см3/г). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 15 мин, после чего повторно вводят 4,47⋅10-3 моль малеата натрия (V(NaMal)=5 см3, C(NaMal)=8,93⋅10-4 моль/см3). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 15 мин, после чего выключают мешалку, извлекают готовый катализатор.

Пример 5

Пример отличается от примера 1 тем, что масса катализатора составляет 3,3 см3, объем щелочи 150 см3, объем реактора 400 см3.

Пример 6

Пример отличается от примера 1 тем, что температура проведения процесса составляет 55°С, а скорость вращения мешалки 3500 об/мин.

Пример 7

Пример отличается от примера 1 только тем, что температура проведения процесса составляет 65°С, а скорость вращения мешалки 1500 об/мин.

Пример 8

В реактор жидкофазной гидрогенизации (300 см3) загружают 1,1 см3 скелетного никеля со средним радиусом частиц 4,8 мкм и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 60°С, продувают аргоном, при перемешивании (2000 об/мин) катализатор обрабатывают 8,93⋅10-3 моль малеата натрия (V(NaMal)=10 см3, C(NaMal)=8,93⋅10-4 , VH2/mkt=40 см3/г). Перемешивание продолжают 10 мин, после чего выключают перемешивание. Далее замещают аргон в атмосфере реактора на водород. Затем включают перемешивание на 35 мин. После выключения перемешивания еще дважды повторяют процедуру, начиная с продувки аргоном, после чего извлекают готовый катализатор.

Пример 9

В реактор жидкофазной гидрогенизации (300 см3) загружают 1,1 см3 скелетного никеля со средним радиусом частиц 4,8 мкм и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 60°С, продувают водородом, при перемешивании (2000 об/мин) катализатор обрабатывают 1,34⋅10-2 моль малеата натрия (V(NaMal)=15 см3, C(NaMal)=8,93⋅10-4 моль/см3, VH2/mkt=60 см3/г). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 23 мин, после чего повторно вводят 1,34⋅10-2 моль малеата натрия (V(NaMal)=15 см3, C(NaMal)=8,93⋅10-4 моль/см3). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 23 мин, после чего выключают мешалку, извлекают готовый катализатор.

Пример 10.

В реактор жидкофазной гидрогенизации (300 см3) загружают 3,3 см3 скелетного никеля со средним радиусом частиц 4,8 мкм и 100 см3 водного раствора гидроксида натрия 25%. Реактор термостатируют при 65°С, продувают водородом, при перемешивании (3500 об/мин) катализатор обрабатывают 4,02⋅10-2 моль малеата натрия (V(NaMal)=45 см3, C(NaMal)=8,93⋅10-4 моль/см3, VH2/mkt=60 см3/г). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 20 мин, после чего повторно вводят 1,34⋅10-2 моль малеата натрия (V(NaMal)=15 см3, C(NaMal)=8,93⋅10-4 моль/см3). Сразу после введения малеата натрия начинается поглощение водорода, которое заканчивается через 21 мин, после чего выключают мешалку, извлекают готовый катализатор.

Начальное количество алюминия в образцах определяли с помощью энергодисперсионного анализа на базе прибора VEGA3 TESCAN. Результат приведен в таблице, в столбце 1, таблицы. Распределение частиц по радиусу определяли методом ньютоновской дифракции с помощью прибора Fritsch analysette 22. По полученным данным был определен радиус на максимуме распределения, данные приведены в таблице, в столбце 2, таблицы.

Предлагаемый способ требует меньшего времени и трудозатрат. В данном способе можно использовать различные гидрируемые вещества в зависимости от желаемого результата, отсутствует необходимость в использовании особо чистого аргона.

Способ удаления остаточного алюминия из скелетного никелевого катализатора, заключающийся в циклической обработке гидрируемым соединением в водном растворе гидроксида натрия 25%, в среде водорода при температуре 55-65°C, отличающийся тем, что скелетный никелевый катализатор помещают в реактор гидрогенизации в растворе гидроксида натрия при соотношении объема катализатора (см) при ρ=4,5 г/см, объема щелочи (см) при ω=25%, объема реактора (см) - (1,1-3,3):(50-150):(300-400); герметизируют реактор; насыщают атмосферу водородом; вводят в избытке гидрируемое соединение, в качестве которого используют, например, или малеат натрия, или пропен-2-ол-1, или пероксид водорода, в количестве, достаточном для присоединения водорода на каждом грамме катализатора, - V/m - 20-60 см/г; перемешивают при частоте вращения 1500-3500 об/мин; при этом количество повторов таких циклов: для малеата натрия - 2, для пропен-2-ол-1 - 4, для пероксида водорода - 3.
Источник поступления информации: Роспатент

Showing 11-20 of 67 items.
25.08.2017
№217.015.be26

Теплообменный аппарат

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах для рекуперации тепла, а также для разделения компонентов жидких промышленных отходов в различных отраслях народного хозяйства. В теплообменном аппарате, содержащем корпус с патрубками подвода и отвода...
Тип: Изобретение
Номер охранного документа: 0002616737
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.cbcd

Тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианины кобальта и никеля

Изобретение относится к тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианинам кобальта и никеля общей формулы Соединения обладают красящей способностью по отношению к полистиролу и капрону и могут быть использованы в качестве исходных соединений для синтеза металлокомплекса...
Тип: Изобретение
Номер охранного документа: 0002620270
Дата охранного документа: 24.05.2017
25.08.2017
№217.015.cbee

Способ получения синтез-газа для производства метанола

Изобретение относится к области переработки природного газа, а именно к способу получения синтез-газа для производства метанола, а также может быть использовано на предприятиях химической и нефтехимической промышленности, производящих метанол. Способ заключается в двухступенчатой...
Тип: Изобретение
Номер охранного документа: 0002620434
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc24

4-[4-(1-метил-1-фенилэтил)фенокси]-5-нитрофталонитрил

Изобретение относится к новому производному фталонитрила, а именно к 4-[4-(1-метил-1-фенилэтил)фенокси]-5-нитрофталонитрилу указанной ниже формулы, которое может найти применение в синтезе фталоцианинов и их металлокомплексов, проявляющих жидкокристаллические и красящие свойства, а также...
Тип: Изобретение
Номер охранного документа: 0002620381
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc82

1-[(5-амино-1,2,4-тиадиазол-3-ил)имино]-2,3-дигидро-3-имино-2-фенил-1h-инден-2-сульфокислота, обладающая свойством кислотного красителя для шелка, шерсти и капрона

Изобретение относится к новому гетероциклическому соединению формулы: которое может быть использовано в качестве кислотного красителя для окрашивания шелка, шерсти, капрона в различные оттенки красного цвета. 3 ил., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002620382
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cc89

Способ получения синтетического гранулированного цеолита

Изобретение относится к получению цеолитов. Предложен способ получения гранулированного без связующего цеолита со структурой PHI, имеющего атомное соотношение Al:Si = 1:(2÷3). Способ включает смешение исходных компонентов, формование гранул, их сушку, термоактивацию и гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002620431
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.ce4c

Способ получения теплоизоляционного материала

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического...
Тип: Изобретение
Номер охранного документа: 0002620676
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ced3

Сырьевая смесь для изготовления керамического кирпича

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. Сырьевая смесь для изготовления керамического кирпича, включающая глину, кварцевый песок модулем крупности 2,0-2,2, выгорающую добавку, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002620677
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d0d8

Сорбент для газовой хроматографии

Изобретение относится к сорбентам для газовой хроматографии. Предложенный сорбент состоит из твердого носителя и медного комплекса в качестве стационарной фазы. В качестве медного комплекса сорбент содержит тетра(1',7',7'-триметилбицикло[2.2.1]гептано[2',3'-b]пиразинопорфиразин меди....
Тип: Изобретение
Номер охранного документа: 0002621337
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.d3e8

Способ получения комплексов лантаноидов с 5, 15-дифенилтетрабензопорфином

Изобретение относится к способу получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином. Способ включает взаимодействие фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, сплавление полученного 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он с...
Тип: Изобретение
Номер охранного документа: 0002622292
Дата охранного документа: 14.06.2017
Showing 1-5 of 5 items.
13.01.2017
№217.015.8a3e

Способ получения катализатора реакций гидрогенизации

Изобретение относится к способам получения и применения нанесенного катализатора на основе никеля в реакциях восстановления основных классов промышленно важных органических соединений: при получении капролактама, анилина, спиртов и жиров. В способе получения катализатора реакций гидрогенизации,...
Тип: Изобретение
Номер охранного документа: 0002604093
Дата охранного документа: 10.12.2016
11.10.2018
№218.016.8ff2

Способ получения скелетного никелевого катализатора для гидрирования непредельных органических соединений

Изобретение относится к химической промышленности, а именно к способам получения скелетного никелевого катализатора для применения в реакциях восстановления основных классов промышленно важных органических соединений газообразным водородом. Способ заключается в том, что берут никель-алюминиевый...
Тип: Изобретение
Номер охранного документа: 0002669201
Дата охранного документа: 09.10.2018
19.01.2019
№219.016.b24b

Способ механохимического получения катализатора реакций гидрогенизации на основе никеля

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров. Способ получения катализатора...
Тип: Изобретение
Номер охранного документа: 0002677654
Дата охранного документа: 18.01.2019
02.10.2019
№219.017.d053

Способ получения оксида никеля

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом. Для получения оксида никеля в качестве исходного соединения используют нитрат никеля в виде кристаллогидрата Ni(NO)⋅6HO,...
Тип: Изобретение
Номер охранного документа: 0002700047
Дата охранного документа: 12.09.2019
30.05.2020
№220.018.2269

Способ механохимического синтеза никелевого катализатора гидрирования

Изобретение относится к получению нанесённого никелевого катализатора гидрогенизации механохимическим способом для восстановления органических соединений, и может использоваться в пищевой, парфюмерной, нефтехимической и нефтеперерабатывающей промышленности. Способ включает нанесение на носитель...
Тип: Изобретение
Номер охранного документа: 0002722298
Дата охранного документа: 28.05.2020
+ добавить свой РИД