×
10.05.2018
218.016.4c18

СПОСОБ ПОЛУЧЕНИЯ ВИНИЛИДЕНОВЫХ ОЛЕФИНОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия цирконоцендихлоридов с алюминийорганическими соединениями. В качестве цирконоцендихлоридов используют (CH)ZrCl или цирконоцендихлорид, имеющий общую формулу [X(CH)]ZrCl, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, и характеризующийся величиной диэдрального угла между циклопентадиенильными кольцами α=51-53.5°. Взаимодействие с алюминийорганическими соединениями осуществляют сначала с триизобутилалюминием, а затем с метилалюмоксаном. Изобретение позволяет повысить выход димеров с образованием легко отделяемых побочных продуктов в количестве не более 7%, при проведении процесса в отсутствие дополнительных растворителей и применении каталитической системы в малых количествах при умеренном времени реакции. 2 з.п. ф-лы, 1 ил., 1 табл., 33 пр.
Реферат Свернуть Развернуть

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, димеров олефинов путем димеризации альфа-олефинов и может быть использовано в органическом синтезе.

Винилиденовые олефины находят использование в синтезе основ полиолефиновых моторных масел и смазок (J. Appl. Polym. Sci. 2009 273, US 2011178348 A1, US 20130225459 A1, US 2013090273 A1, US 2013109604 A1, US 2001041818 A1, US 20090221760 A1), трансмиссионных жидкостей (US 2013029890 A1), клеевых композиций (Angew. Makromol. Chem. 1995, 159).

Из существующего уровня технологии известен способ получения винилиденовых олефинов с использованием каталитической системы на основе незамещенного в циклопентадиенильные кольца цирконоцендихлорида (C5H5)2ZrCl2 и алюминийорганического активатора, полиметилалюмоксана (МАО), взятого в соотношении от 1:1 до 100:1 к цирконоцендихлориду. Оптимальным является соотношение от 5:1 до 20:1, в случае гексена-1 и октена-1 достигается селективность образования димера до 90% и производительность катализатора из расчета на исходное соединение до 500 ч-1 (патент US 4658078 А, С17С 2/26, опубл. 14.04.1987). Недостатком данного метода является низкая активность катализатора, которая требует использования его больших количеств (0.5-1%).

Также описан способ получения винилиденовых олефинов с использованием каталитической системы на основе цирконоцендихлорида (C5H5)2ZrCl2 и алюминийорганических активаторов на основе продуктов гидролиза триэтилалюминия или триизобутилалюминия (патент US 4658078 А, С17С 2/26, опубл. 14.04.1987). Недостатком данного способа является умеренная селективность образования винилиденового олефина (88% и менее), а также низкая производительность катализатора из расчета на исходное соединение (100 ч-1 и менее).

Известен способ получения винилиденовых олефинов с использованием каталитической системы на основе цирконоцендихлорида (C5H5)2ZrCl2 и МАО, взятого в соотношении 1:500, для получения олигомеров децена-1 (патент US 6548724 В2, С07С 2/06, опубл. 15.04.2003). При 90% конверсии децена-1 селективность невысока - выход винилиденового олефина не превышает 40%.

Известен способ получения винилиденовых олефинов с использованием каталитических систем на основе широкого набора цирконоцендихлоридов, активированных триоктилалюминием и [C6H5NMe2][В(C6F5)4], для получения олигомеров децена-1 (патент US 8207390 В2, С07С 2/22, опубл. 26.06.2012). Во всех случаях образование винилиденового олефина наблюдалось с селективностью 50% и менее.

Известен способ получения винилиденовых олефинов с использованием каталитической системы на основе диизопропилцирконоцендихлорида (iPr-C5H4)2ZrCl2 в присутствии 100-400 эквивалентов сокатализатора - МАО - при 40-45°С позволило получить винилиденовый олефин на основе децена-1 с селективностью 75% и производительностью катализатора из расчета на исходное соединение до 500 ч-1 (патент US 8168838 В2, С07С 9/22, С10М 105/04, опубл. 01.05.2012).

Известен способ получения винилиденовых олефинов с использованием каталитической системы на основе диметилсилилбис(тетрагидроинденил)диметилциркония в присутствии триоктилалюминия и [C6H5NMe2][В(C6F5)4] для получения винилиденового олефина на основе децена-1 при повышенных температурах (120°С и более) (патент US 9234150 В2, С10М 105/04, С10М 107/02, опубл. 12.01.2016). Несмотря на высокую производительность, процесс характеризуется низкой селективностью как с точки зрения соотношения олигомеров, так и с точки зрения содержания винилиденового изомера в димерной фракции, не превышающего 40%.

Известен способ получения винилиденовых олефинов с использованием каталитической системы на основе цирконоцендихлорида (C5H5)2ZrCl2 и дизамещенных в циклопентадиенильные кольца цирконоцендихлоридов (R-C5H4)2ZrCl2 в присутствии МАО и проведении реакции под давлением водорода (публикация к патенту US 2011207977 A1, С07С 11/02, С07С 2/02, С07С 2/74, опубл. 04.11.2008). Максимально достигнутая селективность образования винилиденового димера на основе децена-1 составила 42%.

Наиболее близким к заявленному техническому решению является решение, отраженное в патенте US 8119850 В2, С07С 2/22, опубл. 21.02.2012. В данном источнике описан способ получения каталитической системы для получения винилиденовых олефинов путем взаимодействия замещенных цирконоцендихлоридов с алюминийорганическими соединениями и способ получения винилиденовых олефинов общей формулы RCH2CH2C(=CH2)R димеризацией альфа-олефинов RCH=CH2 в присутствии полученной каталитической системы. В соответствии с этим решением, для синтеза димеров олефинов формулы RCH2CH2C(R)=CH2 предлагается использовать цирконоцены (C5H5)2ZrL2, цирконоцены X(C5H4)2ZrL2 X(C5H3R)2ZrL2, а также их инденильные аналоги, в которых X - мостиковые группы, a L - одновалентные лиганды, в присутствии кислородсодержащих алюминийорганических соединений (например, МАО) и хлор-алюминийорганических соединений. Соотношение мономер/катализатор до 5000:1. Недостатками данного технического решения являются умеренная скорость реакции (70-90% конверсия достигается через 5-8 часов при 50°С), а также низкая селективность образования винилиденовых димеров олефинов. Максимально достигнутый выход димера децена составляет 77.7% (конверсия 92%, селективность 84%, время реакции 5 часов при 50°С). Выход димера октена через 2 часа 54%, и лишь при увеличении времени реакции до 8 часов достигается высокий выход - 92.7%.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа димеризации альфа-олефинов с образованием димеров олефинов формулы RCH2CH2C(R)=CH2 с повышением выхода димера, при проведении реакции в отсутствие дополнительных растворителей и умеренном времени реакции.

Данная задача решается тем, что в способе получения винилиденовых олефинов общей формулы RCH2CH2C(=CH2)R димеризацией альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия цирконоцендихлоридов с алюминийорганическими соединениями, в качестве цирконоцендихлоридов используют (C5H5)2ZrCl2 или цирконоцендихлорид, имеющий общую формулу [X(C5H4)2]ZrCl2, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, и характеризующийся величиной диэдрального угла между циклопентадиенильными кольцами α=51-53.5°, а взаимодействие с алюминийорганическими соединениями осуществляют сначала с триизобутилалюминием, а затем с метилалюмоксаном.

Предпочтительно в качестве цирконоцендихлорида, имеющего общую формулу [X(C5H4)2]ZrCl2, использовать комплекс формулы [O(SiMe2C5H4)2]ZrCl2, где Me - метил, так как наилучшие результаты достигаются при использовании в качестве цирконоцендихлорида комплекса этой формулы.

Предпочтительно в реакционную смесь вместе с метилалюмоксаном добавлять органический или неорганический хлорид, растворимый в углеводородах, так как при этом повышается селективность образования винилиденовых димеров олефинов.

Технический результат изобретения - достижение конверсии альфа-олефина в димер с повышением выхода димеров (более 90%), с образованием легко отделяемых побочных продуктов в количестве не более 7%, при малых количествах катализатора, умеренном времени реакции и проведении процесса в отсутствие дополнительных растворителей.

Таким образом, разработан способ получения винилиденовых димеров альфа-олефинов, основанный на использовании эффективного двухстадийного способа активации цирконоцендихлорида и использовании цирконоцендихлорида с оптимальной структурой.

Получение винилиденовых олефинов из альфа-олефинов осуществляют по реакции (1):

Увеличение производительности катализатора обеспечивается за счет использования двухстадийного способа активации цирконоцендихлорида по реакции (2):

Цирконоцендихлорид выступает в качестве прекатализатора - стабильного каталитически неактивного комплексного соединения циркония, который переводят в катализатор активацией алюминийорганическими соединениями.

Первую стадию активации проводят с целью генерирования реакционно-способного гидрид-хлоридного комплекса (C5H5)2ZrHCl или [X(C5H4)2]ZrHCl взаимодействием (C5H5)2ZrCl2 или [X(C5H4)2]ZrCl2 с триизобутилалюминием (ТИБА). Факт образования подобных комплексов экспериментально доказан при исследовании продуктов взаимодействия цирконоцендихлоридов с ТИБА, J. Organomet. Chem. 692 (2007) 859-868; Macromol. Chem. Phys. 209 (2008), 1210-1219; J. Am. Chem. Soc. 130 (2008), 17423-17433. Разработанная методика заключается в растворении циркониевого комплекса (C5H5)2ZrCl2 или [X(C5H4)2]ZrCl2 в смеси, содержащей жидкий мономер - альфа-олефин, и рассчитанное количество ТИБА (10-20 эквивалентов) при эффективном перемешивании и умеренном нагревании (предпочтительно в интервале 50-70°С). Время первой активации составляет 10-30 минут. При этом образования продуктов димеризации не наблюдается.

На второй стадии к смеси добавляют второй активатор - метилалюмоксан (МАО) в количестве 5-10 эквивалентов по отношению к цирконоценовому прекатализатору. При этом немедленно начинается процесс димеризации, сопровождающийся незначительным тепловым эффектом. Протекание реакции контролируют методами спектроскопии ЯМР или ГЖХ. При температуре 60°С и использовании прекатализаторов, таких как (C5H5)2ZrCl2 или [X(C5H4)2]ZrCl2, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, конверсия мономера достигает 95% и более через 2-4 часа.

Каталитические свойства цирконоцендихлоридов (C5H5)2ZrCl2 или [X(C5H4)2]ZrCl2 зависят от геометрии комплексов, Macromolecules 33 (2002), 9205-9214. Ключевым структурным параметром, влияющим на каталитическую активность, является диэдральный угол α между циклопентадиенильными кольцами (Фиг. 1. Диэдральный угол между циклопентадиенильными кольцами), причем для каждого типа процессов, проходящих на цирконоценовых катализаторах, существует оптимальная величина диэдрального угла α, которая заранее не является известной и очевидной и должна определяться экспериментально, J. Organomet. Chem. 501 (1995), 219-234, Chem. Ber. 129 (1996), 1517-1529.

Величина диэдрального угла α в цирконоцендихлоридах формулы [X(C5H4)2]ZrCl2 может регулироваться введением мостиков с различным количеством звеньев между циклопентадиенильными кольцами. Различают цирконоцены с однозвенными мостиками, например [Me2C(C5H4)2]ZrCl2 [Me2Si(C5H4)2]ZrCl2, двухзвенными мостиками, например [(Me2CC5H4)2]ZrCl2, [(Me2SiC5H4)2]ZrCl2, трехзвенными мостиками, например [O(SiMeC5H4)2]ZrCl2.

В ряду [X(C5H4)2]ZrCl2 близкими по величине диэдрального угла α к незамещенному цирконоцендихлориду (C5H5)2ZrCl2, α=53.5°, Acta Crystallogr., Sect. С: Cryst. Struct. Commun. 51 (1995) 565-567, являются цирконоцендихлориды [X(C5H4)2]ZrCl2, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, а именно: [(Me2CC5H4)2]ZrCl2, α=53.5°, Organometallics 15 (1996), 778-785, [(Me2SiC5H4)2]ZrCl2, α=51.2°, Z. Anorg. Allg. Chem. 622 (1996), 1806-1810, и [O(SiMeC5H4)2]ZrCl2, α=51.1°, Organometallics 14 (1995), 177-185. Два последних комплекса, [(Me2SiC5H4)2]ZrCl2 и [O(SiMeC5H4)2]ZrCl2, характеризуются чуть меньшими по сравнению с (C5H5)2ZrCl2 величинами α. В то же время цирконоцендихлориды с однозвенными мостиками характеризуются заметно большими величинами α, а именно: [Me2C(C5H4)2]ZrCl2, α=71.1°, Organometallics 19 (2000), 2556-2563, [Me2Si(C5H4)2]ZrCl2, α=60.1°, Inorg. Chem. 24 (1985), 2539-2546.

Таким образом, для процесса селективной димеризации альфа-олефинов оптимальной является величина диэдрального угла α=51-53.5°, причем наилучшие результаты демонстрируют цирконоцендихлориды [X(C5H4)2]ZrCl2, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, характеризующиеся меньшей по сравнению с незамещенным цирконоцендихлоридом (C5H5)2ZrCl2 величиной диэдрального угла α. Эти комплексы превосходят по производительности в реакции димеризации альфа-олефинов цирконоцендихлорид (C5H5)2ZrCl2 и цирконоцендихлориды [X(C5H4)2]ZrCl2 с однозвенными мостиками X. Наилучшие результаты по производительности и по селективности демонстрирует комплекс формулы [O(SiMeC5H4)2]ZrCl2.

С целью увеличения селективности образования димера альфа-олефина на второй стадии вместе с активатором может быть добавлено хлоралюминийорганическое соединение. При этом производительность каталитической системы снижается. В то же время более высокая - по сравнению с (C5H5)2ZrCl2 - активность наиболее эффективного из предлагаемых прекатализаторов, [O(SiMe2C5H4)2]ZrCl2, обеспечивает сохранение высокой производительности и достижение 90-94% выхода димеров альфа-олефинов через 4 часа реакции при 60°С при использовании 0.05% (молярных) катализатора.

По окончании реакции металлоорганические компоненты нейтрализуют подкисленной HCl водой. Винилиденовые димеры альфа-олефинов могут быть выделены в чистом виде вакуумной перегонкой.

Каталитические эксперименты проводят в двугорловой колбе объемом 100 мл, снабженной обратным холодильником и септой для введения растворов алюминийорганических сокатализаторов. Перед проведением реакций колбы вакуумируют и заполняют аргоном высокой чистоты. В качестве прекатализаторов используют цирконоцены (C5H5)2ZrCl2 (1), [O(SiMe2C5H4)2]ZrCl2 (2), [(CMe2C5H4)2]ZrCl2 (3), [(SiMe2C5H4)2]ZrCl2 (4), [CMe2(C5H4)2]ZrCl2 (5) и [SiMe2(C5H4)2]ZrCl2 (6).

Цирконоценовые прекатализаторы димеризации альфа-олефинов соответствуют следующим структурным формулам:

Достижение технического результата подтверждается следующими примерами.

Пример 1 (сравнительный). Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), одностадийная активация по методу, описанному в патенте US 8119850 В2, С07С 2/22, опубл. 21.02.2012. К нагретой до 60°С смеси гексена (25 мл, 200 ммоль) и 1.54 М раствора МАО в толуоле (0.6 мл, 1 ммоль) прибавили (C5H5)2ZrCl2 (29.2 мг, 0.1 ммоль). Полученную смесь перемешивали 1.5 часа, охладили, прибавили 2 мл воды и 2 мл конц. HCl. Органическую фазу отделили, остаток промыли 3×5 мл порциями гексана. Объединенные органические фракции упарили при пониженном давлении. Остаток перегнали, собирая фракцию 77-78°С / 8 мм рт.ст. Выход 2-бутилоктена-1 2.0 г (12%).

Пример 2. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), одностадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 1, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 3.5 г (21%).

Пример 3 (сравнительный). Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), одностадийная активация по методу, описанному в патенте US 8119850 В2, С07С 2/22, опубл. 21.02.2012. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 1, за исключением того, что время реакции составило 4.5 часа. Выход 2-бутилоктена-1 8.2 г (49%).

Пример 4. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), одностадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 3, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 12.5 г (74%).

Пример 5 (сравнительный). Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), одностадийная активация с добавкой Et3AlCl по методу, описанному в патенте US 8119850 В2, С07С 2/22, опубл. 21.02.2012. К нагретой до 60°С смеси гексена (25 мл, 200 ммоль), 1.54 М раствора МАО в толуоле (0.6 мл, 1 ммоль) и 1М раствора Et2AlCl в гексане (0.1 мл, 0.1 ммоль) прибавили (C5H5)2ZrCl2 (29.2 мг, 0.1 ммоль). Полученную смесь перемешивали 1.5 часа, охладили, прибавили 2 мл воды и 2 мл конц. HCl. Органическую фазу отделили, остаток промыли 3×5 мл порциями гексана. Объединенные органические фракции упарили при пониженном давлении. Остаток перегнали, собирая фракцию 77-78°С / 8 мм рт.ст. Выход 2-бутилоктена-1 1.3 г (8%).

Пример 6. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), одностадийная активация с добавкой Et3AlCl. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 5, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 2.5 г (15%).

Пример 7 (сравнительный). Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), одностадийная активация с добавкой Et3AlCl по методу, описанному в патенте US 8119850 В2, С07С 2/22, опубл. 21.02.2012. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 5, за исключением того, что время реакции составило 4.5 часа. Выход 2-бутилоктена-1 7.4 г (44%).

Пример 8. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), одностадийная активация с добавкой Et3AlCl. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 7, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 12.1 г (72%).

Пример 9. Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), двухстадийная активация. К нагретой до 60°С смеси гексена (25 мл, 200 ммоль) и 1М раствора ТИБА в гексане (2 мл, 2 ммоль) прибавили (C5H5)2ZrCl2 (29.2 мг, 0.1 ммоль). Полученную смесь перемешивали 20 минут и затем прибавили 0.6 мл (1 ммоль) 1.54 М раствора МАО в толуоле. Полученную смесь перемешивали 1 час, охладили, прибавили 2 мл воды и 2 мл конц. HCl. Органическую фазу отделили, остаток промыли 3×5 мл порциями гексана. Объединенные органические фракции упарили при пониженном давлении. Остаток перегнали, собирая фракцию 77-78°С / 8 мм рт.ст. Выход 2-бутилоктена-1 10.8 г (64%).

Пример 10. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 9, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 14.1 г (84%).

Пример 11. Димеризация гексена-1 в присутствии [(Me2CC5H4)2]ZrCl2 (комплекс 3), двухстадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 9, за исключением того, что вместо комплекса 1 использован комплекс 3. Выход 2-бутилоктена-1 11.8 г (70%).

Пример 12. Димеризация гексена-1 в присутствии [(Me2SiC5H4)2]ZrCl2 (комплекс 4), двухстадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 9, за исключением того, что вместо комплекса 1 использован комплекс 4. Выход 2-бутилоктена-1 12.1 г (72%).

Пример 13. Димеризация гексена-1 в присутствии [Me2C(C5H4)2]ZrCl2 (комплекс 5), двухстадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 9, за исключением того, что вместо комплекса 1 использован комплекс 5. Выход 2-бутилоктена-1 5.4 г (32%).

Пример 14. Димеризация гексена-1 в присутствии [Me2Si(C5H4)2]ZrCl2 (комплекс 6), двухстадийная активация. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 9, за исключением того, что вместо комплекса 1 использован комплекс 6. Выход 2-бутилоктена-1 6.6 г (39%).

Пример 15. Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), двухстадийная активация с добавлением диэтилалюминийхлорида. К нагретой до 60°С смеси гексена (25 мл, 200 ммоль) и 1М раствора ТИБА в гексане (2 мл, 2 ммоль) прибавили (C5H5)2ZrCl2 (29.2 мг, 0.1 ммоль). Полученную смесь перемешивали 20 минут и затем прибавили 0.6 мл (1 ммоль) 1.54 М раствора МАО в толуоле и 1М раствора Et2AlCl в гексане (0.1 мл, 0.1 ммоль). Полученную смесь перемешивали 1 час, охладили, прибавили 2 мл воды и 2 мл конц. HCl. Органическую фазу отделили, остаток промыли 3×5 мл порциями гексана. Объединенные органические фракции упарили при пониженном давлении. Остаток перегнали, собирая фракцию 77-78°С / 8 мм рт.ст. Выход 2-бутилоктена-1 2.4 г (14%).

Пример 16. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 5.2 г (31%).

Пример 17. Димеризация гексена-1 в присутствии [(Me2CC5H4)2]ZrCl2 (комплекс 3), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что вместо комплекса 1 использован комплекс 3. Выход 2-бутилоктена-1 4.7 г (28%).

Пример 18. Димеризация гексена-1 в присутствии [(Me2SiC5H4)2]ZrCl2 (комплекс 4), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что вместо комплекса 1 использован комплекс 4. Выход 2-бутилоктена-1 5.0 г (30%).

Пример 19. Димеризация гексена-1 в присутствии [Me2C(C5H4)2]ZrCl2 (комплекс 5), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что вместо комплекса 1 использован комплекс 5. Выход 2-бутилоктена-1 2.4 г (14%).

Пример 20. Димеризация гексена-1 в присутствии [Me2Si(C5H4)2]ZrCl2 (комплекс 6), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что вместо комплекса 1 использован комплекс 6. Выход 2-бутилоктена-1 4.4 г (26%).

Пример 21. Димеризация гексена-1 в присутствии (C5H5)2ZrCl2 (комплекс 1), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 15, за исключением того, что время проведения реакции после активации МАО составляет 4 часа. Выход 2-бутилоктена-1 14.3 г (85%).

Пример 22. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 21, за исключением того, что вместо комплекса 1 использован комплекс 2. Выход 2-бутилоктена-1 15.8 г (94%).

Пример 23. Димеризация гексена-1 в присутствии [(Me2CC5H4)2]ZrCl2 (комплекс 3), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 21, за исключением того, что вместо комплекса 1 использован комплекс 3. Выход 2-бутилоктена-1 14.5 г (86%).

Пример 24. Димеризация гексена-1 в присутствии [(Me2SiC5H4)2]ZrCl2 (комплекс 4), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 21, за исключением того, что вместо комплекса 1 использован комплекс 4. Выход 2-бутилоктена-1 15.1 г (90%).

Пример 25. Димеризация гексена-1 в присутствии [Me2C(C5H4)2]ZrCl2 (комплекс 5), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 21, за исключением того, что вместо комплекса 1 использован комплекс 5. Выход 2-бутилоктена-1 13.3 г (79%).

Пример 26. Димеризация гексена-1 в присутствии [Me2Si(C5H4)2]ZrCl2 (комплекс 6), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 21, за исключением того, что вместо комплекса 1 использован комплекс 6. Выход 2-бутилоктена-1 14.8 г (88%).

Пример 27. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением бензилиденхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 22, за исключением того, что вместо диэтилалюминийхлорида использован бензилиденхлорид (16 мг, 0.1 ммоль). Выход 2-бутилоктена-1 15.7 г (93%).

Пример 28. Исследование влияния температуры. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 22, за исключением того, что реакцию проводили при 40°С. Выход 2-бутилоктена-1 15.0 г (89%).

Пример 29. Исследование влияния температуры. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 22, за исключением того, что реакцию проводили при 50°С. Выход 2-бутилоктена-1 15.7 г (93%).

Пример 30. Исследование влияния температуры. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 22, за исключением того, что реакцию проводили при 70°С. Выход 2-бутилоктена-1 15.1 г (90%).

Пример 31. Исследование влияния температуры. Димеризация гексена-1 в присутствии [O(SiMeC5H4)2]ZrCl2 (комплекс 2), двухстадийная активация с добавлением диэтилалюминийхлорида. Количества реагентов и условия проведения эксперимента повторяют описанные в примере 22, за исключением того, что реакцию проводили при 80°С. Выход 2-бутилоктена-1 14.5 г (86%).

Пример 32. По методике, аналогичной приведенной в примере 22, в реакцию был введен октен-1 (200 ммоль). Выход 2-гексилдецена-1 составил 21.1 г (94%).

Пример 33. По методике, аналогичной приведенной в примере 22, в реакцию был введен децен-1 (200 ммоль). Выход 2-октилдодецена-1 составил 25.8 г (92%).

Полученные результаты показывают, что в процессе получения винилиденовых олефинов общей формулы RCH2CH2C(=CH2)R димеризацией альфа-олефинов RCH=CH2 в присутствии продукта взаимодействия цирконоцендихлоридов с алюминийорганическими соединениями:

- использование двухстадийной активации прекатализатора последовательно ТИБА и МАО, по сравнению с одностадийной активацией МАО, существенно увеличивает эффективность катализатора.

- цирконоцендихлориды общей формулы [X(C5H4)2]ZrCl2, где X - мостиковая группа, связывающая циклопентадиенильные кольца и имеющая количество звеньев от двух до трех, превосходят по производительности цирконоцендихлорид (C5H5)2ZrCl2 и цирконоцендихлориды [X(C5H4)2]ZrCl2 с однозвенными мостиками X;

- сочетание селективного прекатализатора формулы O(SiMeC5H4)2]ZrCl2 с двухстадийной активацией и добавлением органического или неорганического хлорида, растворимого в углеводородах в качестве регулятора димеризации, например Et2AlCl или PhCHCl2, позволяет получать димер альфа-олефина с выходом 92-94% при проведении реакции в течение 4 часов при 60°С;

- температура проведения реакции 50-70°С является оптимальной.

Таким образом, предлагаемое техническое решение позволяет разработать эффективный метод получения димеров альфа-олефинов, не требующий использования растворителей (реакция в среде жидкого мономера), превосходящий известные аналоги по производительности и селективности (выход димера альфа-олефина до 94%).


СПОСОБ ПОЛУЧЕНИЯ ВИНИЛИДЕНОВЫХ ОЛЕФИНОВ
Источник поступления информации: Роспатент

Showing 41-50 of 141 items.
10.08.2016
№216.015.52c4

Катализатор и способ алкилирования этанола изопропанолом

Изобретение относится к катализатору и способу алкилирования этанола изопропанолом с получением пентанола-2. Катализатор алкилирования этанола изопропанолом состоит из γ-AlO, Cu или Ni и второго металла - Au при следующем содержании компонентов, мас. %: Au - 0,2-0,5, Ni или Cu - 0,06-0,32,...
Тип: Изобретение
Номер охранного документа: 0002594162
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.6b5e

Катализатор и способ получения алифатических углеводородов из рапсового масла

Изобретение относится к области химической технологии, а именно к способу получения алканов и олефинов из возобновляемого сырья - масел и жиров растительного происхождения и более конкретно относится к области гетерогенно-каталитических превращений рапсового масла в узкие фракции C -C, которые...
Тип: Изобретение
Номер охранного документа: 0002592849
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7420

Способ определения состава твердого раствора

Использование: для оценки состава двухкомпонентных твердых растворов в нанодисперсных материалах, включающих, в частности, наноразмерные частицы: Pt-Ru, Pt-Rh, Fe-Co, Pd-Ru, Pd-Rh, Pd-H, Hf-O. Сущность изобретения заключается в том, что предложенный способ определения состава двухкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002597935
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7f35

Металлополимерный дисперсный магнитный материал и способ его получения

Изобретение относится к области создания новых структурированных гибридных металлополимерных нанокомпозиционных материалов на основе электроактивных полимеров с системой полисопряжения и магнитных наночастиц Со и может быть использовано в системах магнитной записи информации, органической...
Тип: Изобретение
Номер охранного документа: 0002601005
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8380

Катализатор и способ переработки этанола в линейные альфа-спирты

Настоящее изобретение относится к катализатору синтеза линейных альфа-спиртов, содержащих четное число атомов углерода, из этанола, состоящий из γ-AlO, Cu или Ni и второго металла, отличающийся тем, что в качестве второго металла он содержит Au при следующем содержании компонентов, % мас.:...
Тип: Изобретение
Номер охранного документа: 0002601426
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a096

Мембрана на основе полигексафторпропилена и способ разделения газов с ее использованием

Изобретение относится к синтезу и термической обработке аморфного стеклообразного перфторированного полимера поли(гексафторпропилена) и применению мембран на его основе для газоразделения. Мембрана для разделения газовых смесей состоит из аморфного стеклообразного поли(гексафторпропилена),...
Тип: Изобретение
Номер охранного документа: 0002606613
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a701

Способ получения катализатора, катализатор и способ алкилирования бензола этиленом с его применением

Изобретение относится к способам приготовления катализаторов для нефтехимических процессов, а именно к способу приготовления цеолитсодержащих катализаторов для процесса алкилирования бензола этиленом и способу алкилирования бензола этиленом с применением таких катализаторов, и может быть...
Тип: Изобретение
Номер охранного документа: 0002608037
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a715

Способ гидроконверсии тяжёлого углеводородного сырья (варианты)

Изобретение относится к способам гидроконверсии тяжелого углеводородного сырья (ТУС) в присутствии дисперсных, ультрадисперсных или наноразмерных катализаторов. Указанный способ может быть использован при гидроконверсии тяжелых битуминозных нефтей, природных битумов, высококипящих остатков...
Тип: Изобретение
Номер охранного документа: 0002608035
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a7fa

Способ подготовки нефтяного шлама для гидрогенизационной переработки (варианты) и способ гидрогенизационной переработки нефтяного шлама с его применением (варианты)

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C. По первому варианту реализации способа нефтяной шлам,...
Тип: Изобретение
Номер охранного документа: 0002611163
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.ab82

Способ окислительной конверсии этана в этилен

Изобретение относится к способу окислительной конверсии этана в этилен. Способ включает подачу этана в реактор дегидрирования, где он контактирует с катализатором дегидрирования на основе оксидов металлов, каталитическое дегидрирование этана при повышенной температуре, отделение продуктов...
Тип: Изобретение
Номер охранного документа: 0002612305
Дата охранного документа: 06.03.2017
Showing 11-13 of 13 items.
02.05.2019
№219.017.486b

Механизм раскрытия руля

Изобретение относится к ракетной технике и касается складываемых аэродинамических поверхностей и механизмов их раскрытия. Механизм раскрытия руля состоит из вала, установленного в корпусе летательного аппарата с возможностью поворота, шарнирно соединенной с валом и жестко фиксируемой в...
Тип: Изобретение
Номер охранного документа: 0002686764
Дата охранного документа: 30.04.2019
21.03.2020
№220.018.0e32

Способ олигомеризации этилена в среде органического растворителя в присутствии хромового катализатора и алюминийорганического активатора

Изобретение относится к области промышленного получения гексена-1 и октена-1 олигомеризацией этилена и может быть использовано в нефтехимической промышленности и в органическом синтезе. Предложен способ получения гексена-1 и октена-1. Олигомеризацию этилена осуществляют при умеренно повышенных...
Тип: Изобретение
Номер охранного документа: 0002717241
Дата охранного документа: 19.03.2020
12.04.2023
№223.018.456e

Способ получения противотурбулентных присадок для применения в условиях низких температур транспортируемой среды

Изобретение относится к области перекачки нефти и нефтепродуктов по магистральным трубопроводам. Способ включает получение сополимера с высокой молекулярной массой путем сополимеризации альфа-олефинов в среде фторированных алканов на титанмагниевом катализаторе Циглера-Натта в инертной...
Тип: Изобретение
Номер охранного документа: 0002754173
Дата охранного документа: 30.08.2021
+ добавить свой РИД