×
10.05.2018
218.016.47b3

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптическим способам измерения деформаций в области исследования механических свойств материалов, в частности инструментальных сталей и твердых сплавов, путем приложения сжимающих статических нагрузок. В способе исследования деформаций материала полируют одну из боковых граней исследуемого образца и поверхность подвижной плиты пресса, обращенную к неподвижной плите. С наружных сторон плит пресса располагают электроды. Между одной из плит и соответствующим электродом вводят слой полупроводника. Устанавливают образец между плитами пресса. Освещают пучками когерентного монохроматического излучения лазера зеркально-полированные поверхности образца и подвижной плиты, располагаемые в рабочих плечах двуплечих интерферометров, с помощью которых формируют интерференционные картины. Причем для регистрации изменения длины образца путем измерения расстояния между плитами пресса луч рабочего плеча продольного интерферометра направляют на зеркально-полированную поверхность подвижной плиты через зеркальную полированную поверхность, предварительно изготовленную на неподвижной плите под углом 45 градусов. Задают предварительную нагрузку на образец. Пропускают постоянный электрический ток между электродами, при прохождении которого через слой полупроводника выделяется тепло, благодаря которому происходит нагрев образца. В процессе испытания деформируют образец, непрерывно измеряют температуру образца, силу нагружения P и ведут счет чисел интерференционных линий с помощью фотоприемников, а результаты измерений записывают и обрабатывают на ПЭВМ. По изменению интерференционных картин определяют деформации материала, а по ним модуль упругости E и коэффициент Пуассона. Технический результат - повышение точности измерений упругих постоянных материала при высоких температурах. 1 з.п. ф-лы, 2 ил.

Изобретение относится к оптическим способам измерения деформаций в области исследования механических свойств материалов, в частности инструментальных сталей и твердых сплавов, путем приложения сжимающих статических нагрузок.

Известен способ исследования механических свойств материалов сжатием (ГОСТ 25.503-97. Расчеты и испытания на прочность. Методы механических испытаний металлов. Метод испытания на сжатие. Минск, 1998), в котором образец предварительно нагружают между плитами пресса, устанавливают на образец тензометры, нагружают ступенчато-возрастающей нагрузкой, измеряют силы нагружения, а также контактным методом продольные и поперечные деформации образца.

Недостатком известного способа является его низкая точность из-за использования контактного метода измерения с помощью тензометров, а также сложность обработки результатов измерений для определения упругих постоянных.

Наиболее близким к предлагаемому является способ исследования деформации материала (пат. РФ №2023252, МПК 5 G01N 3/00, G01B 11/16, опубл. 15.11.1994, Бюл. №21), который выбран в качестве прототипа. Известный способ заключается в том, что полируют одну из граней исследуемого образца и поверхность подвижной плиты пресса, обращенную к неподвижной плите. Устанавливают и деформируют образец между подвижной и неподвижной плитами пресса. Освещают зеркально-полированные поверхности образца и подвижной плиты пучками когерентного монохроматического излучения. Формируют интерференционные картины посредством двуплечих интерферометров, в рабочих плечах которых располагают соответственно зеркально-полированную поверхность образца и зеркально-полированную поверхность подвижной плиты. В процессе испытания измеряют силу нагружения. По изменению интерференционных картин определяют деформации материала, а модуль упругости Е и коэффициент Пуассона μ определяют по формулам:

где P - сила нагружения;

n и m - числа считанных интерференционных линий соответственно на продольном и поперечном интерферометрах;

a - толщина образца в направлении, перпендикулярном полированной грани;

l и b - длина и ширина образца соответственно;

λ - длина волны источника когерентного монохроматического излучения.

Недостатками этого способа являются невозможность проведения измерений на нагретом образце из-за быстрой потери тепла, связанной с его стоком в плиты пресса и длительностью установки и настройки, а также недостаточная точность измерений из-за погрешностей, возникающих от просадки неподвижной плиты под воздействием силы нагружения и большой разности температур образца и плит пресса.

Задачей изобретения является повышение точности измерений упругих постоянных материала при высоких температурах.

Поставленная задача решается за счет получения следующих технических результатов. Нагрев образца производится в его рабочем положении непосредственно перед проведением испытания и с поддержанием температуры нагрева в процессе испытания. Изменение длины образца регистрируется путем измерения расстояния между плитами пресса.

Указанные технические результаты достигаются следующим образом. Полируют одну из боковых граней исследуемого образца и поверхность подвижной плиты пресса, обращенную к неподвижной плите. Устанавливают и деформируют образец между плитами пресса. Освещают зеркально-полированные поверхности образца и подвижной плиты пучками когерентного монохроматического излучения. Формируют интерференционные картины посредством двуплечих интерферометров, в рабочих плечах которых располагают соответственно зеркально-полированную поверхность образца и зеркально-полированную поверхность подвижной плиты, причем луч рабочего плеча продольного интерферометра направляют на зеркально-полированную поверхность подвижной плиты через предварительно-изготовленную на неподвижной плите под углом 45 градусов зеркальную полированную поверхность. С наружных сторон плит пресса располагают электроды, между одной из плит и соответствующим электродом вводят слой полупроводника, нагревают образец путем пропускания постоянного электрического тока между электродами через образец, плиты и слой полупроводника. В процессе испытания непрерывно регистрируют температуру образца с помощью термопары, силу нагружения и по изменению интерференционных картин деформации материала, по которым определяют модуль упругости E и коэффициент Пуассона μ. Для получения более стабильного прогрева образца слой полупроводника также вводят между второй плитой и вторым электродом.

На фиг. 1 изображена оптико-механическая схема, поясняющая реализацию описываемого способа, на фиг. 2 - схема компенсации погрешностей, возникающих из-за просадки неподвижной плиты, за счет увеличения хода рабочего луча при использовании зеркально-полированной поверхности подвижной плиты под углом 45 градусов.

Способ осуществляется следующим образом.

Полируют поверхность 1 одной из боковых граней исследуемого образца 2 и поверхность 3 подвижной плиты 4 пресса, обращенную к неподвижной плите 5. С наружных сторон плит 4 и 5 пресса располагают электроды 6 и 7. Между одной из плит 5 и соответствующим электродом 7 вводят слой полупроводника 8. Устанавливают образец 2 между подвижной 4 и неподвижной 5 плитами пресса. Освещают зеркально-полированные поверхности 1 и 3 образца 2 и подвижной плиты 4 пучками когерентного монохроматического излучения лазера 9. Формируют интерференционные картины посредством двуплечих интерферометров 10 и 11, в рабочих плечах которых располагают соответственно зеркально-полированную поверхность 1 образца 2 и зеркально-полированную поверхность 3 подвижной плиты 4. Причем луч рабочего плеча продольного интерферометра 11 направляют на зеркально-полированную поверхность 3 подвижной плиты 4 через предварительно изготовленную на неподвижной плите 5 под углом 45 градусов зеркальную полированную поверхность 12, что позволяет автоматически компенсировать погрешности Δ1, возникающие из-за просадки неподвижной плиты 5, за счет увеличения хода луча рабочего плеча. Далее задают предварительную нагрузку на образец 2. Пропускают постоянный электрический ток между электродами 6 и 7 через образец 2, плиты 4 и 5 и слой полупроводника 8. При прохождении электрического тока через слой полупроводника 8 выделяется тепло, благодаря которому происходит нагрев плиты 5 и соответственно образца 2. В процессе испытания деформируют образец 2, непрерывно регистрируют температуру образца 2 с помощью термопары 13 и силу нагружения Р и ведут счет чисел n и m интерференционных линий с помощью фотоприемников 14 и 15, а результаты измерений записывают и обрабатывают на ПЭВМ 16. По изменению интерференционных картин определяют деформации материала, а модуль упругости E и коэффициент Пуассона μ определяют по формулам:

Для получения более стабильного прогрева образца слой полупроводника также вводят между второй плитой 4 и вторым электродом 6.

Пример осуществления способа. Взят образец из твердого сплава марки Т15К6 с размерами: толщина а и ширина b равны 6⋅10-3 м, длина l=12⋅10-3 м. Длина волны источника когерентного монохроматического излучения (лазер ЛГ-75) λ=0,6328⋅10-6 м. Плиты пресса выполнены из твердого сплава марки ВК8. В качестве полупроводника использован порошок дисульфида молибдена, нанесенный ровным слоем толщиной 0,06⋅10-3 м на медный электрод со стороны неподвижной плиты. При пропускании постоянного электрического тока в 75 А напряжение между электродами составило 1,2 В, а температура образца, измеряемая тарированной хромель-алюмелевой термопарой, составила 511 К. В результате нагружения образца силой P=60 кН при полученной температуре значения считанных интерференционных линий составили в продольном интерферометре n=151, в поперечном интерферометре m=9. После подстановки экспериментальных данных в приведенные формулы получены значения модуля упругости E=418,6 ГПа и коэффициента Пуассона μ=0,238.

Таким образом, описанный способ исследования деформации материала благодаря реализации нагрева образца в его рабочем положении непосредственно перед проведением испытания и поддержания температуры нагрева в процессе испытания, а также непрерывной регистрации изменения длины образца путем измерения расстояния между плитами пресса позволяет реализовать исследование упругих постоянных материала при высоких температурах с высокой точностью.


СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА
СПОСОБ ИССЛЕДОВАНИЯ ДЕФОРМАЦИИ МАТЕРИАЛА
Источник поступления информации: Роспатент

Showing 111-120 of 184 items.
13.07.2018
№218.016.70ca

Способ изоляции притока пластовых вод в необсаженном горизонтальном участке ствола нефтедобывающей скважины

Изобретение относится к нефтяной промышленности, в частности к изоляции водопритоков в горизонтальных участках скважин. Способ изоляции притока пластовых вод в необсаженном горизонтальном участке ствола нефтедобывающей скважины включает извлечение внутрискважинного оборудования, проведение...
Тип: Изобретение
Номер охранного документа: 0002661171
Дата охранного документа: 12.07.2018
13.07.2018
№218.016.70d1

Сырьевая смесь для производства силикатных изделий

Изобретение относится к области строительных материалов и может быть использовано в качестве сырьевой смеси для производства силикатных кирпича, камней, блоков и плит. Сырьевая смесь для производства силикатных изделий содержит известково-кремнеземистое вяжущее с активностью 35-40% и удельной...
Тип: Изобретение
Номер охранного документа: 0002661173
Дата охранного документа: 12.07.2018
21.07.2018
№218.016.73b3

Способ утилизации бурового шлама с получением экологически чистого грунта

Изобретение относится к способам утилизации бурового шлама с получением экологически чистого грунта, с последующим его применением для рекультивации кустовых площадок с безамбарным бурением прилегающих к ним производственной и вспомогательной инфраструктуры, нарушенных земель временного и...
Тип: Изобретение
Номер охранного документа: 0002661831
Дата охранного документа: 19.07.2018
24.07.2018
№218.016.73ca

Способ предупреждения отложения асфальто-смолистых и парафиновых компонентов нефти в насосно-компрессорных трубах в скважине и устройство для его осуществления

Группа изобретений относится к нефтяной промышленности и может быть использована при добыче нефти с большим содержанием асфальто-смолистых и парафиновых компонентов нефти (АСПО). При фонтанном способе добычи или с помощью установок электроцентробежного насоса (УЭЦН) газожидкостный поток (ГЖП)...
Тип: Изобретение
Номер охранного документа: 0002661951
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73d7

Способ проведения водоизоляционных работ в добывающей скважине, вскрывшей водонефтяную залежь

Изобретение относится к нефтегазодобывающей промышленности и может найти практическое применение при проведении водоизоляционных работ в нефтедобывающих скважинах для изоляции притока подошвенных вод. Способ проведения водоизоляционных работ в добывающей скважине, вскрывшей водонефтяную залежь,...
Тип: Изобретение
Номер охранного документа: 0002661935
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73eb

Состав для изоляции пластовых вод в нефтяных и газовых скважинах

Изобретение относится к нефтегазодобывающей промышленности, в частности к проведению ремонтно-изоляционных работ в нефтяных и газовых скважинах. Состав для изоляции пластовых вод в нефтяных и газовых скважинах включает 94,5 об.% гидрофобной кремнийорганической жидкости ГКЖ-11 Н, 4,7 об.%...
Тип: Изобретение
Номер охранного документа: 0002661931
Дата охранного документа: 23.07.2018
01.09.2018
№218.016.81c1

Устройство для контроля пространственных перемещений

Изобретение относится к области контроля перемещений объектов и касается устройства для контроля пространственных перемещений. Устройство включает в себя корпус, источник и приемники света. Источник света является многоточечным, жестко связан с исследуемым объектом и находится в пространстве,...
Тип: Изобретение
Номер охранного документа: 0002665591
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.81cf

Способ демпферной коррекции деформации позвоночника и устройство для его осуществления

Группа изобретений относится к травматологии и ортопедии и может быть применима для демпферной коррекции деформации позвоночника. Устанавливают демпферный аппарат для коррекции деформации позвоночника. В аппарате фиксирующие стержни винтовыми фиксаторами присоединены к поперечным пластинам,...
Тип: Изобретение
Номер охранного документа: 0002665507
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8251

Система энергосберегающего контурного прогрева элементов гидропривода

Изобретение относится к машиностроению, а именно к средствам прогрева элементов гидропривода. Система энергосберегающего контурного прогрева элементов гидропривода содержит штатную гидросистему машины, гидробак (9), регулируемый гидронасос (4), гидрораспределитель (11), гидроцилиндр (12),...
Тип: Изобретение
Номер охранного документа: 0002665574
Дата охранного документа: 31.08.2018
01.09.2018
№218.016.8267

Стержень для прогрева двс и гидробака газом

Изобретение относится к машиностроению, а именно средствам тепловой подготовки агрегатов и узлов строительных машин. Стержень для прогрева ДВС и гидробака газом состоит из корпуса (1), ограничителя (3), ручки (2), горелок (7), крышек (8), аккумулятора, свечей (21) электроподжига и датчиков...
Тип: Изобретение
Номер охранного документа: 0002665577
Дата охранного документа: 31.08.2018
Showing 11-15 of 15 items.
13.02.2018
№218.016.2419

Дилатометр

Изобретение относится к области исследования материалов с помощью теплофизических измерений, а именно к устройствам для измерения температурного коэффициента линейного расширения (ТКЛР). Дилатометр содержит камеру нагрева со съемной трубкой, в которой горизонтально установлены исследуемый...
Тип: Изобретение
Номер охранного документа: 0002642489
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.47b7

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание с неподвижной...
Тип: Изобретение
Номер охранного документа: 0002650740
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47e0

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, расположенные по ходу его излучения...
Тип: Изобретение
Номер охранного документа: 0002650741
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47f7

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало, с помощью...
Тип: Изобретение
Номер охранного документа: 0002650742
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5c7f

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч,...
Тип: Изобретение
Номер охранного документа: 0002655949
Дата охранного документа: 30.05.2018
+ добавить свой РИД