×
10.05.2018
218.016.476d

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002650856
Дата охранного документа
17.04.2018
Аннотация: Изобретение относится к области лазерной локации. Устройство для определения местоположения источника электромагнитного излучения содержит системы нацеливания и ослабления, регистратор, выходное устройство обработки. Система нацеливания выполнена в виде диафрагмы с отверстием D×D, с размещенным внутри нее уголковым отражателем с габаритным размером d (dD) друг от друга. Технический результат заключается в определении местоположения источника когерентного электромагнитного излучения с одновременным увеличением точности измерения. 2 ил.

Изобретение относится к области лазерной локации, физической оптики и может быть использовано в системах оптической и радиосвязи для определения местоположения объекта в различных диапазонах электромагнитных волн.

Известно устройство [1] для определения местоположения диполя, размеры которого малы по сравнению с длиной волны (L<λ). Для определения его местоположения необходимо иметь систему перемещения приемника в двух взаимно перпендикулярных направлениях, измеряя значение вектора Пойтинга (среднее значение потока энергии). Устройство обладает следующими недостатками:

- невозможность оперативного получения информации о распределении плотности энергии ввиду необходимости перемещения регистратора в пространстве;

- невозможность получения результатов регистрации при нахождении регистратора в «слепой зоне» (вблизи оси диполя);

- значительные погрешности при обработке результатов регистрации при работе с импульсными источниками излучения;

невозможность получения информации о геометрических параметрах излучающей системы.

Известно устройство - лазерная система видения [2], содержащее источник излучения, сканирующее устройство, приемный оптический элемент (линза), фотодетектор (ФЭУ), усилитель, индикатор, синхронизатор. Устройство работает следующим образом: сканирующее устройство осуществляет обработку поверхности исследуемого объекта. Оптический элемент фокусирует отраженный сигнал по поверхности чувствительного элемента ФЭУ. Усиленный сигнал подается на индикатор. Устройство обладает следующими недостатками:

- используется узконаправленный источник подсвета, а вследствие малой расходимости пучка необходимы значительные времена обзора;

- наличие помехи обратного рассеивания;

- продолжительное время использования системы грубого поиска.

Известно устройство наведения излучения на светящийся объект (грозовые разряды) [3]. Устройство обладает следующими недостатками:

- отсутствие обратной связи, обеспечивающей слежение и управление отраженным от объекта сигналом;

- низкая точность измерения местоположения объекта;

- сложность в настройке оптической системы.

Известно устройство, выбранное за прототип [4], содержащее светящийся объект с плоским волновым фронтом в месте установки непрозрачной диафрагмы, имеющей резкий край [5], систему нацеливания, позволяющую установить диафрагму перпендикулярно падающему потоку излучения, измеритель, регистрирующий распределение плотности энергии на некотором расстоянии от диафрагмы. Из расчета дифракционной картины определяется местоположение источника излучения. Устройство имеет следующие недостатки:

- большую погрешность при определении местоположения источника излучения вследствие достаточно резкой зависимости дифракционного сигнала от расстояния между дифракционным источником излучения и экраном;

- отсутствие системы нацеливания;

- большую погрешность, определяемую установкой регистратора и отсутствие союстировки оптической оси приемника с осью источника излучения;

- невозможность локации движущегося объекта.

С помощью предлагаемого изобретения достигается технический результат, заключающийся в определении местоположения источника когерентного электромагнитного излучения с одновременным увеличением точности измерения.

В соответствии с предлагаемым изобретением технический результат достигается тем, что система нацеливания выполнена в виде диафрагмы с отверстием D×D с размещенным внутри нее уголковым отражателем с габаритным размером (d<D), система ослабления интенсивности приходящего пучка выполнена в виде краев отверстия диафрагмы, а регистратор состоит из двух острых каналов, содержащих по два фотоприемника, размещенных попарно симметрично на вертикальной и горизонтальной осях отверстия диафрагмы на расстоянии L (L>D) друг от друга. Применение устройства позволяет использовать излучение источника электромагнитного излучения (когерентного) для определения местоположения самого источника, в отличие от стандартных схем радио- и лазерной локации [6, 7].

На рис. 1 представлена функциональная схема устройства,

где 1 - оптический сигнал источника когерентного излучения;

2 - коллиматорный блок;

3 - система нацеливания;

4 - диафрагма с отверстием D×D;

5 - блок ручного нацеливания (теодолит, визирный телескоп);

6 - уголковый отражатель;

7 - система ослабления (острый край);

8 - регистратор (два фотоприемника в канале А - вертикальный канал, два фотоприемника в канале В - горизонтальный канал);

9 - фотоэлектрические сигналы;

10 - широкополостные усилители;

11 - выходные сигналы;

12 - быстродействующий счетчик, регистрирующий импульсное напряжение;

13 - измеритель временных интервалов.

На рис. 2 представлена система нацеливания с размещенными фотоприемниками в каналах А и В.

Для определенности рассмотрим работу устройства, при которой энергетические приемники работают в режиме счета фотоэлектронов (дискретный режим). Выбор этого режима определяется функционированием фотонных (квантовых) детекторов, в которых при фотодетектировании проявляется квантовый характер оптического поля, и этот режим используется при приеме слабых оптических сигналов, когда на фотодетектор поступает поток единичных фотонов; при этом одноэлектронные импульсы на выходе фотодетектора не суммируются и могут быть зарегистрированы отдельно с помощью быстродействующего счетчика и измерителя временных интервалов.

Устройство работает следующим образом. Система нацеливания 3 осуществляет поиск оптического когерентного сигнала 1, вышедшего из коллиматорного блока 2, выполненного, например, по схеме линзового телескопического устройства, состоящего из окуляра и объектива, фокальные плоскости которых совпадают. Управление пространственным положением системы ручного прицеливания 5 осуществляется устройством ручного управления (теодолит или визирный телескоп), установленным на подвижном основании с осью, параллельной оси системы прицеливания. Основной деталью системы нацеливания является непрозрачная для когерентного сигнала диафрагма 4 с квадратным отверстием D×D, края которого выполнены с резким краем 7, осуществляющая дифракционное ослабление интенсивности приходящего пучка излучения, расширенного вследствие расходимости.

Ослабление пучка излучения в дифракционной зоне (теневая область) может быть описано с помощью формулы [8]

где J0 - интенсивность падающего излучения;

- параметр дифракции;

d - расстояние от края отверстия в область тени;

к - волновой вектор;

Dq - расстояние от источника излучения до диафрагмы;

DP - расстояние от диафрагмы до места установки фотодетектора.

При Dq>>DP из (1) имеем

Аналогичные распределения будут иметь место и для других сторон квадратного отверстия с острыми краями. За этим отверстием установлен уголковый отражатель 6 таким образом, что его габаритный размер меньше размеров отверстия, а ось двугранного угла параллельна плоскости диафрагмы и совпадает по направлению (например) с ее горизонтальной осью. В теневых зонах каждой стороны отверстия установлены регистраторы (фотоприемники) 8, составляющие вертикальный канал А и горизонтальный канал В. Фотоэлектрические сигналы 9, каждого из приемников, усиливаются широкополостным усилителем 10, а выходные сигналы усилителей 11 регистрируются быстродействующими датчиками (счетчиками) 12 и измерителями временных интервалов 13. При установке прямоугольной диафрагмы симметрично оси пучка каждая пара (или вертикальная или горизонтальная) фотоприемников будет иметь одинаковые фотоэлектрические сигналы (при условии установки их на одних и тех же расстояниях от соответствующего края диафрагмы).

Быстродействующие счетчики будут давать одинаковые показания. Таким образом, будут установлены пространственные координаты источника когерентного излучения в плоскости, перпендикулярной лазерному пучку, и привязаны к некоторой реперной системе координат. Третья координата может быть вычислена с помощью уголкового отражателя следующим образом.

При установке Х и У координат с помощью фотоприемников то, что в силу симметрии своего положения, уголковый отражатель направит пришедший к нему оптический сигнал почти соосно с осью падающего пучка, означает, что он попадет в коллиматорный блок и соответственно в выходную апертуру источника когерентного излучения. Ввиду того что обычно выходное зеркало резонатора имеет коэффициент отражения порядка 10 -50%, вновь отраженный сигнал пойдет по тому же пути. Таким образом, оконечная быстродействующая аппаратура (счетчики, временной регистратор) будут фиксировать дополнительные блики. Зная время прихода дополнительного пика по отношению к первичному, можно определить расстояние до источника когерентного излучения по формуле

где С - скорость света;

τ - время прихода дополнительного пика.

Литература

1. Сивухин Д.В. «Общий курс физики», т. 3. «Электричество». М., «Наука», 1977 г.

2. Малашин М.С., Каминский Р.П., Борисов Ю.Б. «Основы проектирования лазерных локационных систем». М., «Высшая школа», 1983 г.

3. Заявка №492135/21/00331 от 09.09.1991 г.

4. Савельев И.В. «Курс общей физики», т. 2. М., «Наука», 1978 г.

5 Матвеев И.Н., Протопопов В.В., Троицкий И.Н., Устинов Н.Д. «Лазерная локация». М., «Машиностроение», 1984 г.

6. Матвеев И.Н. «Лазерная локация». М., «Машиностроение», 1973 г.

7. «Современная радиолокация». «Анализ, расчет и проектирование систем». М., «Сов. радио», 1969 г.

8. Васильев Л.А. «Теневые методы». М., «Наука», 1968 г.

Устройство для определения местоположения источника электромагнитного излучения содержит системы нацеливания и ослабления, регистратор, выходное устройство обработки, отличающееся тем, что система нацеливания выполнена в виде диафрагмы с отверстием D×D, с размещенным внутри нее уголковым отражателем с габаритным размером d (dD) друг от друга.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 341-350 of 624 items.
13.02.2018
№218.016.2671

Установка для решения четвёртого уравнения максвелла

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит измеритель разности фаз, планшет, на котором установлена неподвижная катушка индуктивности, подключенная к генератору переменного тока, и подвижная катушка...
Тип: Изобретение
Номер охранного документа: 0002644099
Дата охранного документа: 07.02.2018
13.02.2018
№218.016.2699

Установка для решения третьего уравнения максвелла

Изобретение относится к учебным приборам и может быть использовано в лабораторном практикуме по курсу физики. Установка содержит: первый зонд; потенциометр, соединенный двумя концевыми контактами с источником постоянного тока; прямоугольный планшет; съемный проводник круглого сечения; два...
Тип: Изобретение
Номер охранного документа: 0002644098
Дата охранного документа: 07.02.2018
17.02.2018
№218.016.2a1f

Устройство для поддержания оптимальной температуры воздуха внутри обитаемых отделений военной гусеничной машины

Изобретение относится к военным гусеничным машинам, в частности к эргономике. Устройство для поддержания оптимальной температуры воздуха внутри обитаемых отделений военной гусеничной машины, содержащее индивидуальный вентилятор механика-водителя, индивидуальный вентилятор наводчика и...
Тип: Изобретение
Номер охранного документа: 0002643015
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2a98

Способ питания импульсной нагрузки от источника переменного напряжения и устройства для его осуществления (варианты)

Изобретение относится к способам и устройствам заряда батарей емкостных накопителей электрической энергии в виде конденсаторов, ионисторов и т.п., широко используемых в импульсной технике, при их заряде от источника переменного тока, в том числе ограниченной мощности. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642866
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2ba3

Универсальная мобильная авиационная система беспилотных летательных аппаратов

Изобретение относится к области военной авиационной техники и может быть использовано в мобильных наземных системах управления беспилотными летательными аппаратами (БЛА) тяжелее воздуха с вертикальным взлетом. Авиационная система размещена на базе автомобильного шасси в кузове-фургоне,...
Тип: Изобретение
Номер охранного документа: 0002643314
Дата охранного документа: 31.01.2018
04.04.2018
№218.016.30af

Способ управления амплитудно-фазовым распределением на раскрыве фазированной антенной решетки

Изобретение относится к антенной технике и предназначено для управления амплитудно-фазовым распределением (АФР) поля на раскрыве деформированной фазированной антенной решетки (ФАР). Изобретение позволяет расширить область возможных применений способа управления АФР на раскрыве ФАР с...
Тип: Изобретение
Номер охранного документа: 0002644999
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3109

Способ оценки точности геометрической модели местности при ее автоматическом построении

Изобретение относится к измерительной технике и может быть использовано в области фотограмметрии при оценке точности геометрической модели местности при ее автоматическом построении. Технический результат – повышение быстродействия за счет сокращения вычислительных операций. Для этого в...
Тип: Изобретение
Номер охранного документа: 0002644996
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3173

Способ идентификации космических объектов искусственного происхождения в космическом пространстве

Способ идентификации космических объектов искусственного происхождения в космическом пространстве включает в себя использование лазерной локации для сканирования поверхности космических объектов. На поверхность указанных объектов нанесены светоотражающие элементы, спектр отражения которых...
Тип: Изобретение
Номер охранного документа: 0002645001
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31a3

Вероятностная спутниковая система для мониторинга лесных пожаров

Изобретение относится к вероятностным (т.е. без стабилизации структуры) спутниковым системам наблюдения Земли, c охватом её обширных регионов. Спутники системы, находящиеся на круговых орбитах, оснащены сканирующей широкоугольной оптико-электронной системой ИК-диапазона с линейным фотоприемным...
Тип: Изобретение
Номер охранного документа: 0002645179
Дата охранного документа: 16.02.2018
10.05.2018
№218.016.39de

Способ заряда литий-ионной аккумуляторной батареи

Использование: в области электротехники. Техническим результатом является повышение эффективности использования литий-ионной аккумуляторной батареи при длительной ее эксплуатации. Согласно способу при проведении заряда литий-ионной аккумуляторной батареи из n последовательно соединенных...
Тип: Изобретение
Номер охранного документа: 0002647128
Дата охранного документа: 14.03.2018
Showing 11-11 of 11 items.
06.06.2023
№223.018.78a9

Способ диффузионной сварки заготовок из керамики

Изобретение может быть использовано для диффузионной сварки сложных керамических изделий, состоящих из двух и более узлов. Выполняют глухие отверстия на свариваемой поверхности по крайней мере одной из свариваемых керамических заготовок. Размещают в зоне их контакта промежуточную прокладку из...
Тип: Изобретение
Номер охранного документа: 0002752820
Дата охранного документа: 06.08.2021
+ добавить свой РИД