×
10.05.2018
218.016.476d

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002650856
Дата охранного документа
17.04.2018
Аннотация: Изобретение относится к области лазерной локации. Устройство для определения местоположения источника электромагнитного излучения содержит системы нацеливания и ослабления, регистратор, выходное устройство обработки. Система нацеливания выполнена в виде диафрагмы с отверстием D×D, с размещенным внутри нее уголковым отражателем с габаритным размером d (dD) друг от друга. Технический результат заключается в определении местоположения источника когерентного электромагнитного излучения с одновременным увеличением точности измерения. 2 ил.

Изобретение относится к области лазерной локации, физической оптики и может быть использовано в системах оптической и радиосвязи для определения местоположения объекта в различных диапазонах электромагнитных волн.

Известно устройство [1] для определения местоположения диполя, размеры которого малы по сравнению с длиной волны (L<λ). Для определения его местоположения необходимо иметь систему перемещения приемника в двух взаимно перпендикулярных направлениях, измеряя значение вектора Пойтинга (среднее значение потока энергии). Устройство обладает следующими недостатками:

- невозможность оперативного получения информации о распределении плотности энергии ввиду необходимости перемещения регистратора в пространстве;

- невозможность получения результатов регистрации при нахождении регистратора в «слепой зоне» (вблизи оси диполя);

- значительные погрешности при обработке результатов регистрации при работе с импульсными источниками излучения;

невозможность получения информации о геометрических параметрах излучающей системы.

Известно устройство - лазерная система видения [2], содержащее источник излучения, сканирующее устройство, приемный оптический элемент (линза), фотодетектор (ФЭУ), усилитель, индикатор, синхронизатор. Устройство работает следующим образом: сканирующее устройство осуществляет обработку поверхности исследуемого объекта. Оптический элемент фокусирует отраженный сигнал по поверхности чувствительного элемента ФЭУ. Усиленный сигнал подается на индикатор. Устройство обладает следующими недостатками:

- используется узконаправленный источник подсвета, а вследствие малой расходимости пучка необходимы значительные времена обзора;

- наличие помехи обратного рассеивания;

- продолжительное время использования системы грубого поиска.

Известно устройство наведения излучения на светящийся объект (грозовые разряды) [3]. Устройство обладает следующими недостатками:

- отсутствие обратной связи, обеспечивающей слежение и управление отраженным от объекта сигналом;

- низкая точность измерения местоположения объекта;

- сложность в настройке оптической системы.

Известно устройство, выбранное за прототип [4], содержащее светящийся объект с плоским волновым фронтом в месте установки непрозрачной диафрагмы, имеющей резкий край [5], систему нацеливания, позволяющую установить диафрагму перпендикулярно падающему потоку излучения, измеритель, регистрирующий распределение плотности энергии на некотором расстоянии от диафрагмы. Из расчета дифракционной картины определяется местоположение источника излучения. Устройство имеет следующие недостатки:

- большую погрешность при определении местоположения источника излучения вследствие достаточно резкой зависимости дифракционного сигнала от расстояния между дифракционным источником излучения и экраном;

- отсутствие системы нацеливания;

- большую погрешность, определяемую установкой регистратора и отсутствие союстировки оптической оси приемника с осью источника излучения;

- невозможность локации движущегося объекта.

С помощью предлагаемого изобретения достигается технический результат, заключающийся в определении местоположения источника когерентного электромагнитного излучения с одновременным увеличением точности измерения.

В соответствии с предлагаемым изобретением технический результат достигается тем, что система нацеливания выполнена в виде диафрагмы с отверстием D×D с размещенным внутри нее уголковым отражателем с габаритным размером (d<D), система ослабления интенсивности приходящего пучка выполнена в виде краев отверстия диафрагмы, а регистратор состоит из двух острых каналов, содержащих по два фотоприемника, размещенных попарно симметрично на вертикальной и горизонтальной осях отверстия диафрагмы на расстоянии L (L>D) друг от друга. Применение устройства позволяет использовать излучение источника электромагнитного излучения (когерентного) для определения местоположения самого источника, в отличие от стандартных схем радио- и лазерной локации [6, 7].

На рис. 1 представлена функциональная схема устройства,

где 1 - оптический сигнал источника когерентного излучения;

2 - коллиматорный блок;

3 - система нацеливания;

4 - диафрагма с отверстием D×D;

5 - блок ручного нацеливания (теодолит, визирный телескоп);

6 - уголковый отражатель;

7 - система ослабления (острый край);

8 - регистратор (два фотоприемника в канале А - вертикальный канал, два фотоприемника в канале В - горизонтальный канал);

9 - фотоэлектрические сигналы;

10 - широкополостные усилители;

11 - выходные сигналы;

12 - быстродействующий счетчик, регистрирующий импульсное напряжение;

13 - измеритель временных интервалов.

На рис. 2 представлена система нацеливания с размещенными фотоприемниками в каналах А и В.

Для определенности рассмотрим работу устройства, при которой энергетические приемники работают в режиме счета фотоэлектронов (дискретный режим). Выбор этого режима определяется функционированием фотонных (квантовых) детекторов, в которых при фотодетектировании проявляется квантовый характер оптического поля, и этот режим используется при приеме слабых оптических сигналов, когда на фотодетектор поступает поток единичных фотонов; при этом одноэлектронные импульсы на выходе фотодетектора не суммируются и могут быть зарегистрированы отдельно с помощью быстродействующего счетчика и измерителя временных интервалов.

Устройство работает следующим образом. Система нацеливания 3 осуществляет поиск оптического когерентного сигнала 1, вышедшего из коллиматорного блока 2, выполненного, например, по схеме линзового телескопического устройства, состоящего из окуляра и объектива, фокальные плоскости которых совпадают. Управление пространственным положением системы ручного прицеливания 5 осуществляется устройством ручного управления (теодолит или визирный телескоп), установленным на подвижном основании с осью, параллельной оси системы прицеливания. Основной деталью системы нацеливания является непрозрачная для когерентного сигнала диафрагма 4 с квадратным отверстием D×D, края которого выполнены с резким краем 7, осуществляющая дифракционное ослабление интенсивности приходящего пучка излучения, расширенного вследствие расходимости.

Ослабление пучка излучения в дифракционной зоне (теневая область) может быть описано с помощью формулы [8]

где J0 - интенсивность падающего излучения;

- параметр дифракции;

d - расстояние от края отверстия в область тени;

к - волновой вектор;

Dq - расстояние от источника излучения до диафрагмы;

DP - расстояние от диафрагмы до места установки фотодетектора.

При Dq>>DP из (1) имеем

Аналогичные распределения будут иметь место и для других сторон квадратного отверстия с острыми краями. За этим отверстием установлен уголковый отражатель 6 таким образом, что его габаритный размер меньше размеров отверстия, а ось двугранного угла параллельна плоскости диафрагмы и совпадает по направлению (например) с ее горизонтальной осью. В теневых зонах каждой стороны отверстия установлены регистраторы (фотоприемники) 8, составляющие вертикальный канал А и горизонтальный канал В. Фотоэлектрические сигналы 9, каждого из приемников, усиливаются широкополостным усилителем 10, а выходные сигналы усилителей 11 регистрируются быстродействующими датчиками (счетчиками) 12 и измерителями временных интервалов 13. При установке прямоугольной диафрагмы симметрично оси пучка каждая пара (или вертикальная или горизонтальная) фотоприемников будет иметь одинаковые фотоэлектрические сигналы (при условии установки их на одних и тех же расстояниях от соответствующего края диафрагмы).

Быстродействующие счетчики будут давать одинаковые показания. Таким образом, будут установлены пространственные координаты источника когерентного излучения в плоскости, перпендикулярной лазерному пучку, и привязаны к некоторой реперной системе координат. Третья координата может быть вычислена с помощью уголкового отражателя следующим образом.

При установке Х и У координат с помощью фотоприемников то, что в силу симметрии своего положения, уголковый отражатель направит пришедший к нему оптический сигнал почти соосно с осью падающего пучка, означает, что он попадет в коллиматорный блок и соответственно в выходную апертуру источника когерентного излучения. Ввиду того что обычно выходное зеркало резонатора имеет коэффициент отражения порядка 10 -50%, вновь отраженный сигнал пойдет по тому же пути. Таким образом, оконечная быстродействующая аппаратура (счетчики, временной регистратор) будут фиксировать дополнительные блики. Зная время прихода дополнительного пика по отношению к первичному, можно определить расстояние до источника когерентного излучения по формуле

где С - скорость света;

τ - время прихода дополнительного пика.

Литература

1. Сивухин Д.В. «Общий курс физики», т. 3. «Электричество». М., «Наука», 1977 г.

2. Малашин М.С., Каминский Р.П., Борисов Ю.Б. «Основы проектирования лазерных локационных систем». М., «Высшая школа», 1983 г.

3. Заявка №492135/21/00331 от 09.09.1991 г.

4. Савельев И.В. «Курс общей физики», т. 2. М., «Наука», 1978 г.

5 Матвеев И.Н., Протопопов В.В., Троицкий И.Н., Устинов Н.Д. «Лазерная локация». М., «Машиностроение», 1984 г.

6. Матвеев И.Н. «Лазерная локация». М., «Машиностроение», 1973 г.

7. «Современная радиолокация». «Анализ, расчет и проектирование систем». М., «Сов. радио», 1969 г.

8. Васильев Л.А. «Теневые методы». М., «Наука», 1968 г.

Устройство для определения местоположения источника электромагнитного излучения содержит системы нацеливания и ослабления, регистратор, выходное устройство обработки, отличающееся тем, что система нацеливания выполнена в виде диафрагмы с отверстием D×D, с размещенным внутри нее уголковым отражателем с габаритным размером d (dD) друг от друга.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 221-230 of 624 items.
13.01.2017
№217.015.7b27

Вертолётный радиоэлектронный комплекс

Изобретение относится к области радиоэлектроники и позволяет осуществлять дистанционный контроль источников радиоизлучений (ИРИ). Достигаемый технический результат - повышение помехоустойчивости и достоверности приема сигналов источников радиоизлучений и обмена аналоговой и дискретной...
Тип: Изобретение
Номер охранного документа: 0002600333
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8009

Гидроакустический зонд для измерения скорости звука в море

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду...
Тип: Изобретение
Номер охранного документа: 0002599916
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8405

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность...
Тип: Изобретение
Номер охранного документа: 0002601532
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.84d9

Устройство выравнивания аэродромного грузоподъемного механизма

Изобретение относится к области средств механизации, применяемых на аэродроме. Устройство выравнивания аэродромного грузоподъемного механизма содержит опорную платформу и установленные на ней датчик выравнивания опорной платформы в горизонтальное положение, выносные опорные гидравлические...
Тип: Изобретение
Номер охранного документа: 0002602884
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85e5

Способ формирования импульсной характеристики воздушного объекта с повышенной информативностью на участках его пространственно-углового замирания

Изобретение относится к радиолокационным методам и может быть реализовано и применено в системах отождествления аэродинамических летательных аппаратов, использующих наряду с другими признаками векторный отличительный признак, именуемый импульсной характеристикой (ИХ) объекта и формируемый на...
Тип: Изобретение
Номер охранного документа: 0002603694
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86cb

Способ пеленгования источника радиоизлучения

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов....
Тип: Изобретение
Номер охранного документа: 0002603356
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8864

Наземный пункт управления, сбора, обработки и передачи информации на базе шасси специального транспортного средства и буксируемого прицепа

Изобретение относится к транспортным средствам, в частности к мобильным наземным пунктам управления беспилотными летательными аппаратами (БЛА). Наземный пункт управления предложен на базе шасси транспортного средства и кузова-фургона прицепа. Транспортное средство содержит кузов-фургон,...
Тип: Изобретение
Номер охранного документа: 0002602518
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8969

Мягкий судоподъемный понтон

Изобретение относится к судоподъемным средствам и может быть использовано при выполнении работ по подъёму затонувших объектов. Мягкий судоподъемный понтон содержит надувную цилиндрическую оболочку, систему продувки оболочки, узлы подвески и буксировки понтона. Система подвески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002602444
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89c7

Способ формирования опорного сигнала для совместной обработки сигналов стандартной и высокой точности системы глонасс

Изобретение относится к области радиолокации и радионавигации. Достигаемый технический результат заключается в увеличении отношения сигнал/шум в результате совместной обработки сигнала стандартной и высокой точности системы ГЛОНАСС и уменьшении количества вычислений при синтезе...
Тип: Изобретение
Номер охранного документа: 0002602509
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8ae7

Устройство для компенсации саморазряда аккумуляторных батарей

Изобретение относится к электротехнике и может быть применено в устройствах для подзаряда аккумуляторных батарей, находящихся на хранении, с целью компенсации их саморазряда. Технический результат направлен на повышение надежности устройства. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002604204
Дата охранного документа: 10.12.2016
Showing 11-11 of 11 items.
06.06.2023
№223.018.78a9

Способ диффузионной сварки заготовок из керамики

Изобретение может быть использовано для диффузионной сварки сложных керамических изделий, состоящих из двух и более узлов. Выполняют глухие отверстия на свариваемой поверхности по крайней мере одной из свариваемых керамических заготовок. Размещают в зоне их контакта промежуточную прокладку из...
Тип: Изобретение
Номер охранного документа: 0002752820
Дата охранного документа: 06.08.2021
+ добавить свой РИД