×
10.05.2018
218.016.4741

Результат интеллектуальной деятельности: БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002650611
Дата охранного документа
16.04.2018
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, дополнительно к этому выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Известны радиоволновые способы измерения, которые используют для бесконтактного измерения уровня жидких сред в емкостях для хранения нефтепродуктов, химически активных, агрессивных и вязких жидкостей (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 208 с.). При этом реализуемые на основе этих способов уровнемеры должны обеспечивать достаточно высокую одинаковую точность (до 2 мм) в диапазоне измерения от 0,3 до 20 метров и при этом быть надежными, удобными в эксплуатации и недорогими устройствами. В задачах, связанных с радиоволновым бесконтактным измерением уровня жидкостей, применяются способы с частотной модуляцией электромагнитных колебаний.

Реализацию способа рассмотрим на примере бесконтактного радиоволнового уровнемера, использующего в работе линейную частотную модуляцию несущей волны (ЛЧМ). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной от контролируемой поверхности волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности контролируемой среды сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала СРЧ: fp = 2ΔfML/cTM, где L - расстояние до поверхности контролируемой среды, ΔfM - максимальный диапазон перестройки частоты, TM - период линейной модуляции, с - скорость света. Из этой формулы следует

Как и у всех частотных дальномеров, здесь имеется методическая дискретная ошибка определения дальности δ, обусловленная конечным числом периодов сигнала разностной частоты за время периода модуляции, которое может отличаться от целого:

Наличие этой ошибки определяется способом измерения частоты, который основан на подсчете числа нулей сигнала за определенное время. Так как при незначительном изменении расстояния меняется фаза, а следовательно, и форма сигнала на выходе смесителя, то результат подсчета меняется дискретно. В связи с этим используются различные технические решения, направленные на уменьшение этой погрешности (Кагаленко Б.И., Марфин В.П., Мещеряков В.П. Дальномер повышенной точности // Измерительная техника, 1981, №12. С. 68-69).

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала разностной частоты в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970, 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделении сигнала разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами и вычислении расстояния по частоте этого сигнала, определяемой по максимальному значению его частотного спектра.

Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую ΔfM, чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что ΔfM в этом случае равна 500 МГц, а ошибка δ равна 0.15 м при диапазоне измерения свыше 0.3 м. Поэтому, чтобы обеспечить приемлемую точность приходится увеличивать ΔfM. Обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005, №2. С. 21-25).

Вместе с тем, использование больших значений ΔfM приводит к увеличению дополнительных погрешностей из-за паразитной частотной модуляции от влияния дополнительных элементов в емкостях и стенок, от неравномерности амплитудно-частотной характеристики трактов, нелинейности модуляции задающего генератора и т.п. Все это вместе с увеличением стоимости широкополосного устройства приводит к снижению функциональных характеристик уровнемера.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, дополнительно к этому выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости.

На Фиг. 1 представлена структурная схема устройства, реализующего способ.

На Фиг. 2 изображены временные диаграммы сигналов на выходах первого и второго смесителя.

На Фиг. 3 изображена взаимно корреляционная функция между сигналами с выходов первого и второго смесителя в нормированном виде.

На фиг. 1 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, первый смеситель 6, второй смеситель 7, фазовращатель на угол π/4 8, вычислительное устройство 9.

Способ реализуется следующим образом.

Генератор линейно-изменяющегося напряжения 1 модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону контролируемой поверхности 10. Отраженная электромагнитная волна принимается антенной 5 и передается на первый вход смесителя 6 напрямую, а на первый вход смесителя 7 через фазовращатель на угол π/4 8. На вторые входы смесителей поступает часть мощности падающей волны от направленного ответвителя 3. С выходов смесителей 6 и 7 сигналы разностных частот поступают в вычислительное устройство 9, куда также поступает синхронизирующий сигнал от модулятора 1.

Поскольку частоты принимаемых отраженных сигналов сдвинуты по фазе относительно друг друга на угол π/4, то и сигналы разностной частоты на выходах смесителей также будут сдвинуты на эту фазу. В результате на выходе первого и второго смесителей образуются СРЧ, сдвинутые между собой по фазе на π/4 (см. кривые S1(t) и S2(t) на фиг. 2). Если при этом использовать временную выборку N = 2000 значений (как на фиг. 2), с длительностью каждой выборки - Δt, то функция r12(t3) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки t3 за время TM = NΔt будет выглядеть следующим образом:

В нормированном дискретном виде коэффициента взаимной корреляции r12(j) от дискретного сдвига j функция (5) она примет вид:

График этой функции представлен на Фиг. 3. В процессе измерения оба сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода частоты сигнала разностной частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (4) tmax = jmaxΔt, как показано на Фиг. 3. Далее можно определить разностную частоту fp = 1/4tmax, а затем по формуле (1) вычислить расстояние от датчика до поверхности жидкости, соответствующее уровню L:

Таким образом, ошибка, связанная с неточным определением разностной частоты из-за стохастического характера спектра СРЧ и его дискретной природой при измерении уровня, устраняется, а точность измерения по сравнению с прототипом увеличивается. Особенно это преимущество достигается при узкополосных датчиках с небольшим диапазоном ΔfM, когда ошибка δ особенно велика в соответствии с формулой (2). А поскольку стоимость устройства в целом сильно возрастает при увеличении ширины полосы пропускания всех компонентов, то данный способ позволяет конструировать датчики с меньшей себестоимостью, чем построенные с применением способа-прототипа.

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости, заключающийся в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, выделяют первый сигнал разностной частоты на выходе первого смесителя между падающими и отраженными электромагнитными волнами, отличающийся тем, что выделяют второй сигнал разностной частоты на выходе второго смесителя между падающими электромагнитными волнами и отраженными волнами, сдвинутыми по фазе на угол π/4, вычисляют взаимно корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют уровень жидкости в емкости.
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Showing 191-200 of 276 items.
09.06.2018
№218.016.5f03

Способ организации взаимодействия клиента с сервером приложений с использованием сервис-браузера

Изобретение относится к вычислительной технике, в частности к средствам обмена данными между клиентом и сервером. Техническим результатом предложения является повышение скорости обработки информации при функционировании в защищенной среде. Способ организации взаимодействия клиента по крайней...
Тип: Изобретение
Номер охранного документа: 0002656735
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f43

Способ и система выполнения распределенного аналого-цифрового суммирования и управления его выполнением

Группа изобретений относится к области вычислительной техники и может быть использована в устройствах, выполняющих операции суммирования сигналов, одновременно генерируемых многими источниками. Техническим результатом является повышение скорости распределенных операций суммирования чисел в...
Тип: Изобретение
Номер охранного документа: 0002656741
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60eb

Способ внутрипластового горения

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют...
Тип: Изобретение
Номер охранного документа: 0002657036
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.64b1

Способ измерения параметров движения объекта и система для его осуществления

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих угловых и линейных ускорений объекта. Способ измерений параметров движения объекта с инерциальной измерительной системой, характеризующийся расположением 9...
Тип: Изобретение
Номер охранного документа: 0002658124
Дата охранного документа: 19.06.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6b7e

Многопозиционный пневматический модуль линейных перемещений

Изобретение относится к области машиностроения. Техническим результатом является упрощение конструкции. Многопозиционный пневматический модуль линейных перемещений содержит рабочий цилиндр с поршнем, выходной элемент, узел фиксации, фиксатор и углубления, с которыми взаимодействует фиксатор,...
Тип: Изобретение
Номер охранного документа: 0002659851
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6c1d

Измеритель путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный...
Тип: Изобретение
Номер охранного документа: 0002659821
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6ea2

Система управления движением судна с дублированием каналов курса и резервным управлением по курсу

Система управления движением судна (СУД) с дублированием каналов курса и резервным управлением движения содержит датчик руля, датчик дифференцирования, блок логики, три задатчика угла курса и три датчика угла курса, два сумматора, блок среднего заданного угла курса, блок оценки возмущающего...
Тип: Изобретение
Номер охранного документа: 0002660193
Дата охранного документа: 05.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
02.08.2018
№218.016.778c

Способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002662803
Дата охранного документа: 31.07.2018
Showing 41-41 of 41 items.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД