×
10.05.2018
218.016.46bd

Результат интеллектуальной деятельности: Многослойные магниторезистивные нанопроволоки

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации. Многослойные магниторезистивные нанопроволоки состоят из чередующихся ферромагнитных и медных слоев, при этом в качестве ферромагнитных слоев используются слои никель-железо с толщинами 10-30 нм, а толщины медных слоев – 2-5 нм и суммарное количество пар слоев от 100 до 10 000. Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл. 3 пр., 3 ил.

Изобретение относится к области материалов для использования в магнитосенсорных и магнитометрических устройствах, устройствах записи-считывания информации.

Металлические многослойные низкоразмерные структуры являются в настоящее время одними из наиболее интересных объектов исследования. Благодаря их уникальным магнитным и электрическим свойствам, они находят широкое применение при создании устройств спинтроники. Особую роль здесь играет обнаруженный в них гигантский магниторезистивный эффект (ГМР). Природа этого эффекта обусловлена сильным различием коэффициентов рассеяния электронов проводимости с параллельной и антипараллельной ориентацией спинов относительно вектора намагниченности ферромагнитных слоев. Практический интерес к многослойным структурам обусловлен возможностью их использования в качестве сенсоров магнитного поля, чувствительных элементов головок записи-считывания магнитной информации, решения различного типа задач магнитометрии - определения местоположения объекта по магнитному полю Земли, измерения бесконтактным способом угла поворота и линейного перемещения, распознавания образа ферромагнитных объектов.

В основе практического использования многослойных нанопроволок лежат два основных принципа. Первый, основывается на том факте, что пространственная ориентация спинов электронов в ферромагнитных слоях (наноразмерной величины) многослойных нанопроволок «ферромагнетик/диамагнетик» определяется величинами и направлениями протекающих по ним спин-поляризованных токов, дефектностью ферромагнитных слоев, составом и состоянием межфазных границ. Это позволяет с помощью электрического поля управлять магнитной структурой ферромагнитных нанослоев. Второй принцип обусловлен тем, что инжекция спин-поляризованых электронов в диамагнитные слои создает в них неравновесную намагниченность, позволяющую влиять на величину спинового тока через диамагнитные прослойки за счет изменения их толщины и состава.

Известны многослойные структуры Co/Cu (D.W. Lee, D.J. Kim, US Patent 6,912,770 B2 (05.07.2005) / Application Number: 10/316,783 (11.12.2002)) для использования в качестве сенсоров магнитного поля. Для согласования с полупроводниковыми устройствами на подложки Та, TaN, TiN или WN методом химического парофазного осаждения (CVD-метод) наносят барьерный слой Cu (толщиной от 10 до 100 нм). Далее методом напыления на барьерный слой Cu наносят пленку ферромагнетика (в частности Со), с варьируемыми толщинами (от 10 до 1000 нм). На поверхность пленки Со наносят фоточувствительный материал (фоторезист). После чего он селективно протравливается вместе с пленкой Со, образуя «траншеи». Т.о. на подложке формируются полосы Со (ширина 0.05-1 мкм, толщина 0.05-1 мкм). После этого в гальваностатическом режиме «траншеи» заполняются диамагнетиком (в частности Cu). После этого методом механохимического полирования доводят многослойную структуру Со/Cu до необходимой толщины и параллельности поверхностей и далее на верхнюю поверхность наносят слой диэлектрика.

Недостатком данного материала является то, что процесс формирования многослойной структуры сопряжен с большим количеством технологических операций, что негативно сказывается на объемах и скорости выпускаемой продукции. Так же, ширина слоев диамагнитного металла зависит от параметров шаблона (в процессе селективного протравливания), и при этом невозможно получить слои Сu шириной менее 0.05 мкм.

Известены многослойные нанопроволоки системы Co/Cu (Х.-Т. Tang, et al, J of Appl. Phys., 2006, V. 99, 033906-1-033906-7). Многослойные нанопроволоки формируются в порах оксида алюминия методом электроосаждения из комбинированного электролита в потенциостатическом режиме. Поочередно формируются слои металлов Со и Cu. Диаметр пор составляет 300 нм. Максимальный эффект ГМР в 13.5% при комнатной температуре достигается при соотношении толщин слоев кобальта и меди 8 нм/10 нм. При этом величина поля насыщения ГМР эффекта составляла 0.28-0.38 Тл.

Недостатком данного материала является относительно высокая коэрцитивная сила чистого кобальта, что обуславливает высокие значения полей насыщения (0.28-0.38 Тл) ГМР эффекта в многослойных нанопроволоках Со/Cu.

Наиболее близкими к предложенному материалу являются многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных слоев - CoNi и слоев меди - Cu, формируемые методом электролитического осаждения (Патент BY 19142 «Способ получения многослойных нанопроволок для сенсоров магнитного поля», Грабчиков С.С., Труханов А.В., Шарко С.А., от 30.04.2015). В качестве прототипа нами принят материал на основе многослойных нанопроволок CoNi/Cu, формирующихся методом электролитического осаждения в потенциостатическом режиме из комбинированного электролита в поры матриц анодного оксида алюминия диаметром 100±10 нм. Толщина каждого ферромагнитного и медного слоя составляет 25±1 нм и 2±0,3 нм соответственно.

Недостатком данного материала является относительно невысокий (по сравнению с предлагаемым материалом) коэффициент ГМР (-15,3%) и значительная величина поля насыщения ГМР эффекта (0.03-0.05 Тл).

Технический результат - получение многослойных магниторезистивных нанопроволок NiFe/Cu с коэффициентами ГМР -18.4…-19.2% и величиной поля насыщения ГМР эффекта 0,001-0,0015 Тл.

Технический результат достигается тем, что в качестве ферромагнитных слоев используются слои NiFe с толщинами 10-30 нм, а толщины медных слоев - 2-5 нм и суммарное количество пар слоев от 100 до 10 000.

Сущность изобретения состоит в следующем. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Электроосаждение осуществляют с помощью программно-аппаратного комплекса на базе потенциостата ПИ-50-1.1 (ГОСТ 22261-82) с электрохимической ячейкой и программатора ПР-8 с (ГОСТ 25272-14), предназначенного для задания сигнала. Электрод сравнения хлорсеребряный ЭВЛ-1М 3.1 (ТУ25-05 (1Е2.840.217)-78), имеющий потенциал 201±3 мВ относительно нормального водородного электрода предназначен для задания и поддержания потенциала осаждения при работе в потенциостатическом режиме. Силу тока в электрической цепи контролируют амперметром М325-1,5 (ГОСТ 871 1-93), имеющим класс точности 0.2. Для получения многослойных нанопроволок используют метод импульсного электроосаждения (А V Trukhanov, S S Grabchikov, S A Sharko, S V Trukhanov, К L Trukhanova, О S Volkova, and A Shakin, Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimension structures, Materials research express Vol. 3, №6, (2016)) из комбинированного электролита. Принцип данного метода основан на том, что ферромагнитные металлы группы железа (Fe, Co. Ni, а также их сплавы) и благородные металлы (Cu, Ag, Au, Pt) могут быть использованы соответственно в качестве ферромагнитных и диамагнитных слоев. Получение многослойных нанопроволок методом электролитического осаждения из одного и того же электролита основывается на том факте, что равновесный потенциал восстановления ионов ферромагнитных и благородных металлов отличается более чем на 400 мВ. Поэтому при малых потенциалах осаждения будут восстанавливаться только такие металлы, как Cu, Ag и т.д. При более отрицательных потенциалах осаждаются как Cu, так и ферромагнитные металлы или их сплавы. Но если задавать концентрацию ионов Cu в электролите намного меньше, чем концентрация ферромагнитных ионов (порядка 1% от концентрации ионов магнитного металла), то из-за диффузионных затруднений переноса ионов Cu к катоду скорость осаждения слоев Cu будет ограничена, независимо от величины прикладываемого потенциала.

Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; Н3 BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель).

Соотношение по концентрациям солей NiSO4⋅7H2O и FeSO4⋅7H2O (210/15 г/л) в электролите было обусловлено тем, что при данной концентрации формируются составы сплавов (Ni80Fe20) с минимальной коэрцитивной силой и максимальными значениями магнитной проницаемости.

Режимы осаждения многослойных нанопроволок были следующими: ϕNiFe=-1.8…-2.3 В; ϕCu=-0.2-0.4 В. При этих условиях средняя скорость осаждения отдельных слоев составляет VNiFe=~8-10 нм/с; vCu=~0.1-0.5 нм/с. Толщина ферромагнитного слоя составляет 10-30 нм, толщина слоя Си составляет 2-5 нм. Толщина матрицы оксида алюминия составляет ~2-120 мкм. Диаметр пор в матрицах ~100±10 нм.

Коэффициент ГМР многослойных нанопроволок рассчитывался на основе данных измерений электрического сопротивления двухконтактным методом при фиксированных значениях магнитных полей в интервале до 0.13 Тл при комнатной температуре по следующей формуле:

где R(B) - электрическое сопротивление многослойных нанопроволок NiFe/Cu во внешнем магнитном поле В, R0 - электрическое сопротивление многослойных нанопроволок NiFe/Cu без магнитного поля.

Пример 1

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 20 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 20-25 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 1,6-2 с. Время осаждения одного парциального диамагнитного слоя Cu - 4-8 с. Коэффициент ГМР составляет -18,7%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 1)

Пример 2

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 5 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 35-38 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 12,5-25 с. Коэффициент ГМР составляет -18,4%. Величина поля насыщения ГМР эффекта - 0,0015 Тл (Фиг. 2)

Пример 3

Многослойные магниторезистивные нанопроволоки NiFe/Cu с толщинами слоев: ферромагнитный слой NiFe 30 нм; диамагнитный слой Cu - 2 нм; суммарное количество пар слоев NiFe/Cu - 1000; суммарная толщина матриц анодного оксида алюминия - 30-35 мкм. В поры матриц анодного оксида алюминия (диаметр пор 100±10 нм) методом электроосаждения в потенциостатическом режиме осаждают многослойные нанопроволоки системы NiFe/Cu. Осаждение многослойных нанопроволок NiFe/Cu в поры матриц оксида алюминия производят из комбинированного электролита следующего состава (г/л): NiSO4⋅7H2O - 210 г/л; MgSO4 - 60 г/л; FeSO4⋅7H2O - 15 г/л; NiCl2 - 20 г/л; H3BO3 - 30 г/л; сахарин - 1; CuSO4⋅5H2O - 35 г/л; KNaC4H4O6 4H2O - 25 г/л; pH=2.4-2.6, Т=50-60°C (в качестве анода используют никель). Режимы осаждения многослойных нанопроволок: ϕNiFe=-1.8…-2.3В; ϕCu=-0.2-0.4В. При этих условиях средняя скорость осаждения отдельных слоев составляет vNiFe=~8-10 нм/с; vCu=~0.1-0.2 нм/с. Время осаждения одного парциального ферромагнитного слоя NiFe - 3-3,75 с. Время осаждения одного парциального диамагнитного слоя Cu - 5-10 с. Коэффициент ГМР составляет - 19,2%. Величина поля насыщения ГМР эффекта - 0,0013 Тл (Фиг. 3)

Многослойные магниторезистивные нанопроволоки, состоящие из чередующихся ферромагнитных и медных слоев, отличающиеся тем, что ферромагнитные слои выполнены в виде слоев NiFe с толщиной 10-30 нм, а медные слои - с толщиной 2-5 нм, при этом суммарное количество пар слоев составляет от 100 до 10 000.
Многослойные магниторезистивные нанопроволоки
Многослойные магниторезистивные нанопроволоки
Многослойные магниторезистивные нанопроволоки
Источник поступления информации: Роспатент

Showing 11-20 of 322 items.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Showing 11-20 of 45 items.
20.03.2015
№216.013.3201

Способ измерения параметров наноразмерных магнитных пленок

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и...
Тип: Изобретение
Номер охранного документа: 0002544276
Дата охранного документа: 20.03.2015
20.04.2015
№216.013.41cf

Способ получения ферритовых изделий

Изобретение относится к порошковой металлургии. Способ получения ферритовых изделий включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания облучением...
Тип: Изобретение
Номер охранного документа: 0002548345
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.47a3

Спектральный магнитоэллипсометр с устройством для магниторезистивных измерений

Изобретение относится к измерительной технике, представляет собой спектральный магнитоэллипсометр и предназначено для контроля производства в условиях сверхвысокого вакуума наноразмерных магнитных структур. Магнитоэллипсометр содержит источник излучения с монохроматором, плечо поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002549843
Дата охранного документа: 27.04.2015
10.06.2015
№216.013.51c5

Способ синтеза металлоуглеродного нанокомпозита feco/c

Изобретение относится к области химии и нанотехнологии. Сначала готовят раствор полиакрилонитрила (ПАН) и ацетилацетоната Fe(CHCOCH=C(CH)O)·6HO в диметилформамиде при температуре 40°C. Вводят раствор ацетата кобальта Со(СНСОО)·4HO в диметилформамиде. Концентрация ПАН составляет 5% от массы...
Тип: Изобретение
Номер охранного документа: 0002552454
Дата охранного документа: 10.06.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
13.01.2017
№217.015.6ad8

Способ получения нанокомпозита feni/c в промышленных масштабах

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/C. Техническим результатом является получение нанокомпозита FeNi/C, содержащего наночастицы FeNi с размером от 12 до 85 нм. Способ синтеза нанокомпозита FeNi/C включает приготовление совместного раствора порошка графита,...
Тип: Изобретение
Номер охранного документа: 0002593145
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
+ добавить свой РИД