×
10.05.2018
218.016.448a

Результат интеллектуальной деятельности: ГИДРОДИНАМИЧЕСКИЙ ТЕПЛОГЕНЕРАТОР ДЛЯ СЕТИ ТЕПЛОСНАБЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в теплоэнергетике в качестве автономного источника тепловой энергии. Гидродинамический кавитационный теплогенератор содержит два источника электромагнитного поля и два статора от асинхронных электродвигателей, соосно и встречно расположенных на немагнитном цилиндре, к концам которого через трубопровод подсоединен теплоаккумулятор с теплообменником, включенным в сеть теплоснабжения, а по обе стороны статоров в цилиндр введены токопроводящие решетки, подключенные совместно и согласованно с обмотками статоров к соответствующим источникам электромагнитного поля. В качестве источников электромагнитного поля применены стандартные блоки частотно-регулируемого привода электродвигателей. Между источниками электромагнитного поля и обмотками статоров дополнительно включены быстродействующие коммутаторы чередования фаз обмоток, повышающие эффективность работы теплогенератора. В теплогенераторе используется магнитная суспензия, техническая вода или другая электропроводная жидкость, в которую целесообразно ввести ферромагнитные тела, нерастворимые в этой жидкости, что увеличивает очаги кавитации и тепловую энергию на выходе теплогенератора. Преимущества предлагаемого теплогенератора: отсутствие вращающихся механических узлов, использование стандартных серийно выпускаемых элементов и простота регулирования теплоэнергетических параметров. 2 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к вихревым теплогенераторам и может быть использовано в теплоэнергетике в качестве автономных источников теплоснабжения.

Известны источники тепловой энергии на основе использования вихревых теплогенераторов [1]. В данной работе обоснованы основные принципы их функционирования. В работе [2], содержащей 67 первоисточников, рассмотрено и систематизировано множество конструкций теплогенераторов и предложены модели тепловыделения при механоактивации, объясняющие высокий коэффициент преобразования энергии (КПЭ).

Одна из первых промышленных запатентованных конструкций описана в патенте РФ №2045715 [3].

Теплогенератор содержит корпус, имеющий цилиндрическую часть, ускоритель движения жидкости, выполненный в виде циклона, торцевая сторона которого соединена с цилиндрической частью, а в основании ее смонтировано тормозное устройство с выходным отверстием под патрубок.

Недостатком данного устройства является сложность в практической реализации, так как для его создания, кроме электродвигателя и сетевого насоса требуется изготовить сложную конструкцию непосредственно теплогенератора на нужные технические параметры. Теоретические расчеты в этом случае приблизительны и подгонка выходных характеристик осуществляется методом проб и сравнительных замеров соотношений геометрических размеров отдельных узлов и выделяемой при этом тепловой энергии.

Известен также «Теплогенератор и устройство для нагнетания жидкости» [4], содержащий снабженный цилиндрической частью корпус, в основании которого размещено тормозное устройство и блок ускорителей движения жидкости, причем в устройство введен еще один корпус с цилиндрической частью, оба корпуса выполнены в виде вихревых труб, соединенных с торцевой стороны блока ускорителем движения жидкости в виде улитки. Кроме того, тормозное устройство выполнено в виде пластины трапецеидальной формы, определенным образом прикрепленной к боковым стенкам вихревой трубы, а завихритель может быть выполнен в виде шнека с переменным шагом, и задан диапазон геометрических размеров для сопрягаемых узлов.

Недостатком данного теплогенератора является также сложность в его реализации. Кроме электропривода и сетевого насоса необходимо изготовить на заданные параметры (объем прокачиваемой воды, температуру на выходе и т.д.) конструкцию конкретного теплогенератора, теоретические расчеты которого весьма приблизительны, а в процессе его наладки изготавливать узлы методом подборки и сравнения. Кроме того, недостатком всех подобных теплогенераторов является низкий диапазон регулирования скорости движения жидкости и необходимость дополнительного механизма для создания давления в ней. Данными факторами можно объяснить наличие сравнительно невысокого у них КПЭ.

Известно также «Устройство для получения тепловой и электрической энергии» [5] (прототип) по патенту РФ №2387072.

Это устройство для создания движения среды в бегущем электромагнитном поле содержит гидродинамический кавитационный аппарат в виде цилиндра с вмонтированным в его стенки источником электромагнитного поля, причем в качестве среды используют магнитную суспензию, в качестве магнитопровода статор электродвигателя с подводимым к нему электрическим напряжением трехфазного тока, а выступы пазов магнитопровода статора служат дополнительным источником кавитации.

Недостатком данного устройства является слабое воздействие электромагнитного поля при использовании одного статора, раскручивающего магнитную суспензию, и поэтому низкий КПЭ. Еще более низкий КПЭ будет, если использовать вместо магнитной суспензии другой менее электропроводный электролит.

Кроме того, устройство имеет невысокую эксплуатационную надежность, так как защита магнитопровода пропиткой лаком, в том числе и пазов магнитопровода статора, которые служат дополнительным источником кавитации, снижает срок работы теплогенератора.

Задачей предлагаемого изобретения является устранение вышеуказанных недостатков и создание теплогенератора с более высоким КПЭ.

Технический результат предлагаемого изобретения заключается в следующем:

- повышен КПЭ теплогенератора за счет применения двух статоров электродвигателей со встречно включенными электромагнитными полями, воздействующими на магнитную суспензию;

- повышен КПЭ теплогенератора за счет введения в магнитную суспензию по обе стороны статоров токопроводящих решеток, так же подключенных к источникам, при этом электромагнитные поля токов, протекающих между решетками, взаимодействуют с электромагнитными полями статоров и усиливают эффект кавитации в жидкости;

- повышен КПЭ теплогенератора и улучшено управление им за счет применения для питания обмоток статоров типового частотно-регулируемого привода;

- повышен КПЭ и упрощено управление теплогенератором за счет введения быстродействующего коммутатора фаз обмоток статора, изменяющего вращение жидкости на противоположное и блока управления режимами работы устройства;

- уменьшена стоимость эксплуатации теплогенератора за счет замены магнитной суспензии другой электропроводящей жидкостью.

Технический результат достигается за счет того, что в теплогенераторе, содержащем магнитную суспензию в гидродинамическом кавитационным аппарате с магнитопроводом из статора электродвигателя, цилиндра и источника электромагнитного поля, применены два источника электромагнитного поля и два статора электродвигателя, соосно и встречно расположенных на немагнитном цилиндре, к концам которого через трубопровод подсоединен дополнительно введенный теплоаккумулятор с теплообменником, включенным в сеть теплоснабжения, а по обе стороны статоров в цилиндр введены токопроводящие решетки, подключенные совместно и согласованно с обмотками статоров к соответствующим источникам электромагнитного поля.

Технический результат достигается также за счет того, что в качестве источников электромагнитного поля применены унифицированные блоки частотно-регулируемого привода электродвигателей, введены быстродействующие коммутаторы фаз обмоток, а магнитная суспензия может быть заменена другой электропроводной жидкостью или технической водой, в которую дополнительно введены нерастворимые в ней ферромагнитные тела.

На чертеже приведена конструкция предлагаемого «Гидродинамического теплогенератора для сети теплоснабжения».

Теплогенератор содержит левый статор 1 асинхронного двигателя и правый статор 2 асинхронного двигателя для создания встречно вращающихся магнитных полей, причем статоры соосно и встречно расположены на немагнитном цилиндре 3, концы которого через трубопровод 4 соединены с теплоаккумулятором 5, а его теплообменник 6 включен в сеть теплоснабжения потребителей. По обе стороны статоров в цилиндр через изоляторы введены электроды-токопроводящие решетки 7 и 8, подключенные, как и обмотки статоров, к источникам электромагнитного поля 9 и 10, причем между этими источниками и обмотками статоров могут дополнительно подсоединяться быстродействующие коммутаторы 11 и 12 фаз обмоток статоров, подключенные к блоку 13 управления режимами теплогенератора. Немагнитный цилиндр, трубопровод и теплоаккумулятор заполнены магнитной суспензией или другой электропроводящей жидкостью с содержанием в ней ферромагнитных тел (частиц).

Гидродинамический теплогенератор для сети теплоснабжения работает следующим образом.

Трехфазный (многофазный) ток от источников 9 и 10 электромагнитного поля, проходящий по обмоткам статоров 1 и 2, создает в каждом из них свое разнонаправленное вращающееся магнитное поле, воздействующее через немагнитный цилиндр 3 на находящуюся в нем магнитную суспензию, которая также начинает вращаться. Так как статоры расположены встречно, то и их магнитные поля создают разнонаправленные (встречные) потоки вращения, а в зоне контакта жидкостей от встречных потоков возникают наиболее сильные кавитационные явления, приводящие к их быстрому разогреву.

Для увеличения КПЭ теплогенератора на токопроводящие решетки 7 и 8 подается ток от источников 9 и 10 электромагнитного поля, который взаимодействует с вращающимся магнитным полем статора, усиливая вращающий эффект в магнитной суспензии.

В качестве источников электромагнитного поля для упрощения блока 13 управления режимами целесообразно использовать типовые частотно-регулируемые привода для асинхронных двигателей.

Так же повысить КПЭ теплогенератора возможно за счет работы быстродействующих коммутаторов 11 и 12 фаз обмоток, управляемых от блока 13, при этом с заданной скоростью в каждом из статоров из-за чередования фаз в обмотках жидкость будет изменять направление вращения на противоположное, создавая при этом условия для усиления кавитации в жидкости.

Магнитная суспензия может быть заменена другой электропроводящей жидкостью или технической водой, но в ней целесообразно размещать по аналогии [6] ферромагнитные нерастворимые тела, вращение которых в жидкости создает дополнительные центры кавитации, способствующие активному разогреву жидкости.

Учитывая вышеизложенное, следует ожидать эффективное внедрение в промышленность предлагаемого теплогенератора, что обусловлено:

- отсутствием вращающихся механических узлов (электродвигателя, перекачивающего насоса);

- наличием типовых серийных деталей и устройств (статоры, частотно-регулируемый привод, коммутаторы);

- простая автоматизация процессов регулирования тепловых режимов, которая может осуществляться как в ручном управлении, так и с помощью блока управления режимами;

- в предлагаемом устройстве отсутствует насос для перекачки горячей жидкости, функция которого может быть заменена разностью частот (напряжения) на одном из статоров или регулированием (отключением) тока в токопроводящих решетках.

Источники информации

1. Потапов Ю.С. Новые источники энергии на основе вихревых теплогенераторов // Энергетика и промышленность России, июль 2004, №7 (47), с. 28, 29.

2. Фурмаков Е.Ф. Могут ли гидродинамические теплогенераторы работать эффективно? ОАО «Техприбор», СПб., 196084. E-mail: kb_tis@infopro.spb.su.

3. Потапов Ю.С. Теплогенератор и устройство для нагрева жидкости. Патент РФ №2045715, МПК F25B 29/00, (аналог).

4. Мустафаев Р.И. Теплогенератор и устройство для нагрева жидкости. Патент РФ №2132517, МПК F24H 3/02 (аналог).

5. Маляров А.В. Устройство для получения тепловой и электрической энергии. Патент РФ №2387072, МПК H02N 3/00, H02N 11/00, (прототип).

6. Бондаренко Н.К. и др. Смеситель. Патент СССР №1560295, МПК B01F 13/08, (аналог).

7. Андреев В.И. Тепловой насос. Патент СССР №892148, МПК F25B 29/00, (аналог).

8. Дудышев В.Д. Электрогидроударный теплогенератор. Патент РФ на полезную модель №72308, МПК F24H 3/02, (аналог).

9. Андреев О.Ю. Теплогенератор гидравлический. Патент РФ №2134381, МПК F24D 3/02, (аналог).

10. Патент США US 5284204 А, 08.02.94. (аналог).

11. Патент Германии DE 2461317 В2, 08.07.76. (аналог).

12. Патент США US 4590918 А, 27.05.86. (аналог).

13. Европейский патент ЕР 0093100 А2, 02.11.83. (аналог).

14. Патент Франции FR 2489939 А1, 12.03.82. (аналог).


ГИДРОДИНАМИЧЕСКИЙ ТЕПЛОГЕНЕРАТОР ДЛЯ СЕТИ ТЕПЛОСНАБЖЕНИЯ
ГИДРОДИНАМИЧЕСКИЙ ТЕПЛОГЕНЕРАТОР ДЛЯ СЕТИ ТЕПЛОСНАБЖЕНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 207 items.
25.08.2017
№217.015.a4b6

Способ подготовки поверхности полиимида под химическую металлизацию

Изобретение относится к способам производства гибких печатных плат, соединительных кабелей, шлейфов, микросхем. Предложен способ подготовки поверхности полиимида под химическое осаждение медного покрытия, заключающийся в травлении полиимида водным раствором щелочи, содержащим 150-250 г/л NaOH...
Тип: Изобретение
Номер охранного документа: 0002607627
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5b3

Натриевая соль 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4н)-она, тригидрат

Изобретение относится к натриевой соли 2-метилтио-6-циано-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7(4Н)-она, тригидрату, которая проявляет противовирусное действие в отношении гриппа Технический результат: получено новое соединение, обладающее противовирусной активностью. 1 ил., 2 табл., 4 пр.
Тип: Изобретение
Номер охранного документа: 0002607628
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ea

Способ обогащения пиритизированных высококремнистых маложелезистых бокситов

Изобретение относится к цветной и черной металлургии и может быть использовано для производства глинозема и высокоглиноземистого цемента из низкокачественных пиритизированных высококремнистых маложелезистых бокситов. Способ включает обжиг боксита, причем обожженный боксит в зоне охлаждения...
Тип: Изобретение
Номер охранного документа: 0002611871
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab77

Полупроводниковый сенсорный элемент для определения ионов свинца в водных растворах и способ его изготовления

Полупроводниковый сенсорный элемент для определения ионов свинца в водном растворе содержит в качестве чувствительного материала тонкую пленку сульфида свинца, допированную йодом и нанесенную на диэлектрическую подложку. Формирование пленки осуществляется путем ее осаждения из реакционной...
Тип: Изобретение
Номер охранного документа: 0002612358
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.abaa

Способ определения содержания бактерий с использованием в качестве метки модифицированных магнитных наночастиц

Изобретение относится к биотехнологии, а именно к электрохимическому иммуноанализу. Предложен способ определения содержания грамотрицательных бактерий в анализируемой среде. В водной среде при температуре 37°С конъюгируют бактерии с магнитными наночастицами FeO, Fe, NiFeO или MgFeO,...
Тип: Изобретение
Номер охранного документа: 0002612143
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ac38

Натриевая соль диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-c]-1,2,4-триазин-3,8-дикарбоновой кислоты, моногидрат

Изобретение относится к натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло-[5,1-с]-1,2,4-триазин-3,8-дикарбоновой кислоты моногидрату, обладающему антигликирующей активностью Технический результат: получено новое соединение, обладающее антигликирующей активностью, которое может быть...
Тип: Изобретение
Номер охранного документа: 0002612300
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.ac5b

Способ потенциометрического определения скорости генерирования пероксильных радикалов

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет...
Тип: Изобретение
Номер охранного документа: 0002612132
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b067

V-образно спаренный шнековый движитель для плавсредств (варианты)

Изобретение относится к судостроению и может быть использовано на плавсредствах, как на надводных судах, так и на подводных судах. V-образно спаренный шнековый движитель для плавсредств в варианте надводного судна содержит в кормовой части на транцевой плите расположенные под углом шнеки,...
Тип: Изобретение
Номер охранного документа: 0002613472
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b12d

Способ очистки загрязненного сырья для разделительного производства

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива. Способ очистки загрязненного сырья для разделительного производства от вредных изотопов заключается в снижении...
Тип: Изобретение
Номер охранного документа: 0002613157
Дата охранного документа: 15.03.2017
Showing 21-30 of 45 items.
26.08.2017
№217.015.e38d

Установка для отверждения жидких радиоактивных отходов

Изобретение относится к методам отверждения жидких радиоактивных отходов. Установка для отверждения жидких радиоактивных отходов содержит контейнер с перемешивающей мешалкой, узлы подачи ЖРО и наполнителя. Контейнер соединен с узлом подачи ЖРО трубопроводом, с узлом подачи наполнителя через...
Тип: Изобретение
Номер охранного документа: 0002626385
Дата охранного документа: 26.07.2017
17.02.2018
№218.016.2b26

Ветрогидроэнергетическая установка на основе использования эффекта магнуса

Изобретение относится к области ветро- и гидроэнергетики. Ветрогидроэнергетическая установка состоит из ветроколеса, содержащего вращающиеся цилиндры, из привода цилиндров, источника питания, электрогенератора, кинематически связанного с ветроколесом, причем оси цилиндров, расположенные...
Тип: Изобретение
Номер охранного документа: 0002642996
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.35d5

Термосифон

Изобретение относится к теплотехнике и может быть использовано для передачи тепловой энергии по вертикальным каналам в системах теплоэнергетики. Термосифон содержит корпус, рабочий объем нижней камеры которого заполнен жидкостью, воронку, перегораживающую с зазором нижнюю камеру с паропроводом...
Тип: Изобретение
Номер охранного документа: 0002646273
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4657

Универсальный термоэнергетический генератор. варианты

Изобретение относится к области энергетик и может быть использовано в качестве автономных источников энергопитания. Заявлен термоэнергетический генератор, который содержит батарею термоэнергетических модулей, горячие электроды которых подключены к источнику тепловой энергии, а холодные...
Тип: Изобретение
Номер охранного документа: 0002650439
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.487a

Гелиодистиллятор

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002651025
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4882

Солнечный опреснитель

Изобретение относится к дистилляции морских, загрязненных или минерализованных вод посредством солнечной энергии. Солнечный опреснитель содержит заполненную жидкостью емкость 1 с оптически прозрачной крышкой 2, теплоприемник 3, выполненный в виде полого металлического стержня, погруженного в...
Тип: Изобретение
Номер охранного документа: 0002651003
Дата охранного документа: 18.04.2018
18.05.2018
№218.016.5144

Устройство для получения льда, пресной воды и концентрации растворов вымораживанием

Изобретение относится к энергетике в пищевой и фармацевтической промышленности и может быть использовано для опреснения морской или загрязненной воды, для отделения спиртов из спиртосодержащих растворов, а также для получения концентрированных фруктовых соков. Устройство содержит цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002653166
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5bf9

Солнечный опреснитель бассейнового типа

Назначением изобретения является опреснение морских, загрязненных и минерализованных вод в южных и средних широтах. В бассейне, заполненном минерализованной водой, с прозрачной наклонной кровлей, трубой для отвода конденсата, патрубком подачи минерализованной воды выполнен в углублении дна...
Тип: Изобретение
Номер охранного документа: 0002655892
Дата охранного документа: 29.05.2018
05.07.2018
№218.016.6bb0

Объемная паровая машина для минитэц

Изобретение относится к теплоэнергетике. В паровую машину, содержащую блок двигателя с паровыми цилиндрами, поршнями и золотниковым распределителем пара, подводимого из внешнего парового котла по распределительной сети, электрический генератор, дополнительно вводят блок поршней для перекачки...
Тип: Изобретение
Номер охранного документа: 0002659683
Дата охранного документа: 03.07.2018
03.10.2018
№218.016.8ccb

Солнечный опреснитель с параболоцилиндрическими отражателями

Изобретение относится к устройствам для дистилляции минерализованных, загрязненных или морских вод посредством использования только солнечной энергии для нагрева воды. Солнечный опреснитель содержит концентратор солнца на параболоцилиндрических отражателях, оснащенных консолями с отверстиями, в...
Тип: Изобретение
Номер охранного документа: 0002668249
Дата охранного документа: 27.09.2018
+ добавить свой РИД