×
10.05.2018
218.016.4274

Результат интеллектуальной деятельности: СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002649518
Дата охранного документа
03.04.2018
Аннотация: Объектом изобретения является способ обеспечения обнаружения повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, до первого датчика давления и второго датчика давления вычислительного устройства. При этом способ содержит следующие этапы: измеряют первое давление воздуха на уровне первого датчика давления; измеряют второе давление воздуха на уровне второго датчика давления; определяют теоретическое давление воздушного потока на выходе компрессора высокого давления; осуществляют первую проверку разности между первым значением и теоретическим давлением; осуществляют вторую проверку разности между вторым значением и теоретическим давлением; осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае. Также представлено вычислительное устройство, содержащее набор команд, позволяющих осуществлять способ обеспечения обнаружения повреждения трубопровода. Изобретение содействует обнаружению повреждения трубопровода в турбореактивном двигателе. 2 н. и 6 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к общей области турбореактивных двигателей. В частности, оно касается способа содействия обнаружению повреждения трубопровода в турбореактивном двигателе.

УРОВЕНЬ ТЕХНИКИ

В турбореактивном двигателе воздух, поступающий в компрессор, сжимается, после чего смешивается с топливом и сгорает в камере сгорания. Горячие газы, производимые в камере, приводят во вращение одну или несколько турбин на выходе, после чего выбрасываются наружу. Кроме того, турбореактивный двигатель содержит вычислительное устройство, обеспечивающее функции регулирования мощности и общего электронного управления: например, вычислительное устройство управляет расходом топлива, состоянием ограничителей, разгрузочными вентилями или системами установки угла поворота направляющих лопаток турбореактивного двигателя.

Как правило, компрессор разделен на две части: компрессор низкого давления (НД), за которым следует компрессор высокого давления (ВД). Кроме того, каждый из этих двух компрессоров обычно состоит из нескольких ступеней; при этом последняя ступень компрессора ВД является ступенью, за которой сразу находится камера сгорания. Компрессор предназначен для сжатия воздуха, чтобы привести его к оптимальным значениям скорости, давления и температуры на входе камеры сгорания, при этом отслеживание статического давления на уровне выхода последней ступени компрессора ВД имеет первостепенное значение. Это измерение служит для контроля турбореактивного двигателя и дозировки топлива.

На фиг. 1 схематично показан турбореактивный двигатель ТВ, содержащий устройство измерения статического давления на уровне выхода S компрессора СМР высокого давления. Для упрощения описания в дальнейшем тексте это давление будет называться PS3.

Как показано на фиг. 1, турбореактивный двигатель ТВ содержит, в частности, вычислительное устройство СТ и трубопровод CNL, который подводит воздух на выходе компрессора ВД СМР к вычислительному устройству СТ. Внутри вычислительного устройства СТ блок давления измеряет и преобразует давление поступающего воздуха при помощи датчика давления СР. Впоследствии эту информацию используют для контроля двигателя и обнаружения неисправностей.

Однако, как показывает опыт, значительное количество неисправностей появляется по причине ошибочного измерения давления PS3, например, ускорение, более медленное, чем нормальное, потеря тяги или невозможность достичь требуемой тяги. Эти неисправности чаще всего появляются, когда самолету нужна сильная тяга, то есть во время взлета, в фазе набора высоты или захода на посадку, и могут привести к намеренному выключению турбореактивного двигателя экипажем.

Для повышения надежности измерения, как правило, датчик давления СР дублируют. В этом случае два датчика давления СР1, СР2 измеряют давление поступающего воздуха, при этом проверяют, чтобы разность между двумя измерениями не была дивергентной. В случае дивергентных значений измерений оба значения сравнивают с теоретическим значением давления PS3, определенным в соответствии с моделью, введенной в вычислительное устройство СТ, что позволяет локализовать неисправный датчик давления.

Однако, если этот тест позволяет выявить нарушение в работе датчика, он не позволяет выявить дефект на трубопроводе. Действительно, на уровне трубопровода можно отметить большое количество дефектов, в частности:

- ослабление соединения трубопровода на уровне вычислительного устройства, часто после промывки турбореактивного двигателя, во время которой трубопровод отсоединяют;

- присутствие льда или воды на уровне соединения трубопровода с вычислительным устройством;

- присутствие льда или воды внутри трубопровода;

- появление отверстий в трубопроводе, например, в результате периодического трения с окружающими системами.

Все эти дефекты являются причиной недооценки давления PS3. Например, забитый или перфорированный трубопровод создает потерю напора, снижающую давление, измеряемое датчиком, на выходе места дефекта. При этом расход утечки зависит от статического давления на уровне выхода компрессора ВД, а также от площади утечки. Чем выше давление PS3 или чем больше размер дефекта, тем больше расход утекающего воздуха. Кроме того, потеря напора зависит от расхода утечки. Таким образом, потеря напора тем больше, чем серьезнее дефект и/или чем выше давление PS3.

В настоящее время единственным способом обнаружения дефекта на уровне трубопровода является визуальный осмотр оператором, отвечающим за обслуживание, либо случайно во время операции обслуживания, либо целенаправленно в результате происшествия (намеренная или ненамеренная остановка турбореактивного двигателя во время полета, потеря тяги, невозможность запуска и т.д.).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение призвано решить вышеупомянутые проблемы и предложить способ обеспечения обнаружения повреждения рассматриваемого трубопровода.

Таким образом, первым объектом изобретения является способ содействия обнаружению повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью подвода потока сжатого воздуха, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, к первому датчику давления и второму датчику давления вычислительного устройства.

Способ содержит следующие этапы:

- Этап А: измеряют первое давление воздуха на уровне первого датчика давления;

- Этап В: измеряют второе давление воздуха на уровне второго датчика давления;

- Этап С: определяют теоретическое давление воздушного потока на выходе компрессора высокого давления;

- Этап D: осуществляют первую проверку разности, включающую в себя следующие подэтапы:

- вычисляют первое значение, равное разности между теоретическим давлением и первым давлением;

- сравнивают первое значение с порогом, при этом первая проверка разности является положительной, если первое значение превышает порог, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности, включающую в себя следующие подэтапы:

- вычисляют второе значение, равное разности между теоретическим давлением и вторым давлением;

- сравнивают второе значение с порогом, при этом вторая проверка разности является положительной, если второе значение превышает порог, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае.

В случае положительной конечной проверки можно предположить, что трубопровод имеет дефект. Иначе говоря, положительная конечная проверка является эффективным показателем наличия повреждения трубопровода. Последующий визуальный осмотр позволяет подтвердить, что трубопровод действительно поврежден.

Кроме указанных выше отличительных признаков, заявленный способ может иметь один или несколько следующих дополнительных признаков, которые можно рассматривать индивидуально или во всех технически возможных комбинациях.

Так, в не ограничительном варианте осуществления этап А и этап В осуществляют почти одновременно. Это значит, что два измерения давления отстоят друг от друга во времени максимум на значение времени, равное периоду вычислительного устройства.

В варианте осуществления этапы А, В, С, D, E и F повторяют, например, периодически. Это позволяет подтвердить, что трубопровод имеет дефект.

В варианте осуществления период осуществления этапов А, В, С, D, E и F по существу равен периоду вычислительного устройства. Иначе говоря, конечную проверку осуществляют за каждый период вычислительного устройства. Это обеспечивает быстрое обнаружение дефекта на трубопроводе. В другом варианте осуществления конечные проверки отстоят друг от друга на более продолжительные промежутки времени. Это позволяет уменьшить вычисления внутри вычислительного устройства.

В предпочтительном варианте осуществления после произведенных N последовательных конечных проверок способ содержит этап Н включения тревожного сигнала, при этом N является положительным целым числом. Считается, что после N положительных проверок трубопровод действительно имеет дефект.

В варианте осуществления способ содержит этап I регулирования порогового значения в зависимости от теоретического давления воздушного потока. Порог является, например, значением в процентах теоретического давления. Этап I осуществляют после этапа С.

В предпочтительном варианте осуществления пороговое значение регулируют по максимальному значению между 10 psi (фунтов на квадратный дюйм) и 5% теоретического давления воздушного потока.

Вторым объектом изобретения является компьютерная программа, содержащая набор команд, которые при их исполнении вычислительным устройством позволяют осуществлять заявленный способ.

Изобретение и его различные детали будут более понятны из нижеследующего описания со ссылками на прилагаемые фигуры.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фигуры представлены в качестве иллюстрации не ограничительных примеров изобретения. На этих фигурах:

Фиг. 1 (уже описана) - схематичный вид турбореактивного двигателя, содержащего устройство измерения статического давления на уровне выходе компрессора ВД упомянутого турбореактивного двигателя.

Фиг. 2 - блок-схема способа согласно варианту осуществления изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Предложенный изобретением способ предназначен для применения внутри турбореактивного двигателя ТВ, описанного выше со ссылками на фиг. 1. Так, турбореактивный двигатель ТВ содержит компрессор высокого давления СМР, вычислительное устройство СТ и трубопровод CNL, соединяющий вычислительное устройство СТ с выходом S компрессора высокого давления СМР.

Вычислительное устройство СТ содержит первый датчик давления СР1 и второй датчик давления СР2. Трубопровод CNL выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе S компрессора высокого давления СМР, до первого датчика давления СР1 и второго датчика давления СР2.

Способ основан на идее, согласно которой дефект на трубопроводе CNL отражается на измерениях двух датчиков давления СР1, СР2, так как трубопровод CNL является общим элементом цепи измерения давления PS3.

На фиг. 2 представлена блок-схема способа МЕТН согласно варианту осуществления изобретения. Способ МЕТН содержит следующие этапы:

- Этап А: измеряют первое давление воздуха Р1 на уровне первого датчика давления СР1;

- Этап В: измеряют второе давление воздуха Р2 на уровне второго датчика давления СР2. Оба измерения давления Р1, Р2 осуществляют в реальном времени и почти одновременно. «Почти одновременно» значит, что если вычислительное устройство СТ работает с частотой f, оба измерения давления Р1, Р2 осуществляют в течение временного периода 1/f;

- Этап С: определяют (оценивают) теоретическое давление Pth воздушного потока на выходе S компрессора высокого давления СМР. Модель, введенная в вычислительное устройство СТ, позволяет вычислять в реальном времени это теоретическое значение Pth. Детальное применение этой модели известно из уровня техники, и ее подробное описание опускается. Следует отметить, что вне рамок заявленного способа значение теоретического давления Pth можно использовать для определения наличия неисправности одного из датчиков давления СР1, СР2, как было указано в части «Уровень техники»;

- Этап I: вычисляют пороговое значение S в зависимости от теоретического давления Pth воздушного потока. В идеале, для турбореактивных двигателей типа CFM56-7B порог регулируют таким образом, чтобы он был по существу равен максимальному значению между 10 psi (фунтов на квадратный дюйм), то есть около 0,7 бар, и 5% теоретического значения Pth. Так, если теоретическое давление Pth равно 30 psi, то пороговое значение S равно 10 psi. Если теоретическое давление Pth равно 300 psi, то пороговое значение S равно 15 psi;

- Этап D: осуществляют первую проверку разности Т1, включающую в себя следующие подэтапы:

- Подэтап Da: вычисляют первое значение V1, равное разности между теоретическим давлением Pth и первым давлением P1;

- Подэтап Db: сравнивают первое значение V1 с порогом S, при этом первая проверка разности T1 является положительной, если первое значение V1 превышает порог S, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности T2, включающую в себя следующие подэтапы:

- Подэтап Ea: вычисляют второе значение V2, равное разности между теоретическим давлением Pth и вторым давлением P2

- Подэтап Eb: сравнивают второе значение V2 с порогом S, при этом вторая проверка разности T2 является положительной, если второе значение V2 превышает порог S, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку Tf, которая является положительной, если первая проверка разности T1 и вторая проверка разности T2 оказались положительными, и отрицательной в противном случае;

- Этап G: Этапы А-F повторяют, например, до получения команды на остановку способа или в течение определенного времени или определенное количество раз. Предпочтительно этапы A-F осуществляют периодически, в идеале с частотой f, эквивалентной частоте вычислительного устройства СТ;

- Этап Н: после N последовательных положительных конечных проверок Tf включают тревожный сигнал, при этом N является положительным целым числом. Обычно тревожный сигнал включают, если конечные проверки Tf показывают положительные результаты в течение 4,8 секунды. Если конечные проверки Tf осуществляют с частотой 15 миллисекунд (которая, как правило, является порядком величины частоты вычислительного устройства), то тревожный сигнал включают после N=320 констатаций положительных конечных проверок Tf. Вместе с тем, с учетом мощности вычислительного устройства СТ, установленного в турбореактивном двигателе ТВ, желательно уменьшать частоту констатаций и тем самым снизить нагрузку на вычислительное устройство СТ. Например, если конечные проверки Tf осуществляют с частотой 120 миллисекунд, то тревожный сигнал включают после 40 констатаций положительных конечных проверок Tf. Отмечается, что, поскольку выявляемая неисправность является физической (например, речь идет об утечке в трубопроводе), а не электрической, частоту измерения можно уменьшить, что все же не приводит к снижению надежности способа МЕТН.

Включение тревожного сигнала состоит в передаче информации о неисправности из вычислительного устройства СТ в систему обслуживания. При этом в зависимости от серьезности неисправности система обслуживания принимает решение о выведении или не выведении сигнала на дисплей кабины экипажа. Поскольку измерение давления PS3 является основополагающим при контроле газотурбинного двигателя ТВ, информация о неисправности поступает в кабину экипажа в виде оранжевого сигнала, указывающего на проблему на уровне системы регулирования газотурбинного двигателя ТВ.

Таким образом, согласно описанному способу МЕТН, если конечные проверки Tf дают положительные результаты одновременно на двух локальных каналах, соответствующих двум измерениям давления, причем в течение определенного времени, появляется сигнал неисправности «Повреждение трубопровода PS3».

Следует отметить, что:

- когда газотурбинный двигатель ТВ выключен, способ МЕТН не может обнаружить дефект на трубопроводе CNL, так как давление PS3 равно окружающему давлению;

- после запуска газотурбинного двигателя ТВ потеря напора, связанная с повреждением на трубопроводе CNL, будет более или менее явной в зависимости от тяги газотурбинного двигателя:

- в режиме малого газа тяга является минимальной, следовательно, давление PS3 тоже является минимальным. В зависимости от серьезности повреждения потеря напора может быть слабой, и, следовательно, ее обнаружение затруднено;

- чем больше задаваемая тяга, тем больше потеря напора, и становится возможным обнаружить дефект.

Следует также отметить, что минимальная обнаруживаемая потеря напора напрямую связана с точностью модели вычисления теоретического давления Pth, а также с точностью цепи измерения давлений Р1, Р2. Как правило, эта точность зависит от измеряемых давлений Р1, Р2, при этом точность снижается с повышением давления. Следовательно, пороговое значение S можно устанавливать тем ниже, чем выше точность модели и измерений.


СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 21-30 of 234 items.
04.09.2018
№218.016.82a4

Способ послойного изготовления детали селективным плавлением или селективным спеканием слоев порошка с оптимальной плотностью посредством высокоэнергетического пучка

Изобретение относится к послойному изготовлению детали из порошка. Способ включает этапы, на которых a) берут материал в виде порошка, b) осаждают первый слой порошка на опору, c) сканируют первый слой высокоэнергетическим пучком для локального нагрева порошка с обеспечением селективного...
Тип: Изобретение
Номер охранного документа: 0002665653
Дата охранного документа: 03.09.2018
05.09.2018
№218.016.8317

Способ присоединения трубы к соединителю и соединительный набор

Изобретение относится к способу присоединения трубы (50) к соединителю (101, 102), включающему в себя этапы, на которых: а) обеспечивают соединительный набор, содержащий муфту и фитинг в основном трубчатой формы для соединения вместе по меньшей мере пары труб; б) фитинг размещают в первом...
Тип: Изобретение
Номер охранного документа: 0002665834
Дата охранного документа: 04.09.2018
05.09.2018
№218.016.8375

Многоканальное устройство впрыска для авиационного двигателя

Изобретение относится к многоканальному устройству впрыска топлива для авиационного двигателя. Устройство содержит входной трубопровод, по меньшей мере два трубопровода, впрыска и продувочный трубопровод, распределитель топлива, соединенный с каждым трубопроводом и содержащий подвижный...
Тип: Изобретение
Номер охранного документа: 0002665837
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.843f

Конструкция корпуса с поворотными секторами обечайки, устанавливаемая между двигателем и гондолой

Изобретение относится к области авиации, в частности к конструкциям гондол двигателей. Конструкция корпуса, устанавливаемая между двигателем и гондолой летательного аппарата, включает в себя обечайку, окружающую двигатель и содержащую неподвижную часть (30) и множество секторов (12А, 12В), по...
Тип: Изобретение
Номер охранного документа: 0002665980
Дата охранного документа: 05.09.2018
14.09.2018
№218.016.8788

Усовершенствованная система питания ракетным топливом для космического аппарата

Изобретение относится к системам заправки ракетным топливом (РТ) космического аппарата (КА). Система питания РТ КА содержит бортовое устройство (100), включающее корпус (110) с отверстием (112) питания, ведущим к бортовому баку (120), и клапан (134), выполненный с возможностью выборочного...
Тип: Изобретение
Номер охранного документа: 0002667020
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87ed

Деталь или узел газотурбинного двигателя и соответствующий газотурбинный двигатель

Изобретение относится к детали или узлу газотурбинного двигателя, содержащей лопатки и площадку, от которой отходят лопатки. Согласно изобретению площадка (2) имеет между корытцем первой лопатки и спинкой второй лопатки неосесимметричную поверхность (S), образующую множество ребер (4) по...
Тип: Изобретение
Номер охранного документа: 0002666933
Дата охранного документа: 13.09.2018
14.09.2018
№218.016.87f8

Газотурбинный двигатель с отбором потока сжатого воздуха

Изобретение относится к газотурбинному двигателю, содержащему отбор потока сжатого воздуха, поступающего из компрессора. Газотурбинный двигатель, включающий в себя: выпускной коллектор (7), который содержит множество стоек (10), при этом пространство, разделяющее стойки, образует отверстия, в...
Тип: Изобретение
Номер охранного документа: 0002666928
Дата охранного документа: 13.09.2018
22.09.2018
№218.016.893a

Усовершенствованная система регулирования расхода для питания рабочим телом электрического двигателя космического аппарата

Изобретение относится к области электрических двигателей, в частности двигателей на эффекте Холла, и, в частности, касается средств контроля расхода рабочего тела, подаваемого в электрический двигатель, в рамках применения для космического аппарата. Система регулирования расхода рабочего тела...
Тип: Изобретение
Номер охранного документа: 0002667202
Дата охранного документа: 17.09.2018
25.09.2018
№218.016.8acf

Способы и система вырезания предварительно отформованной заготовки, предназначенной для изготовления детали турбомашины

Способ вырезания предварительно отформованной заготовки включает съемку изображения заготовки и обработку изображения заготовки, причем заготовка предназначена для изготовления детали турбомашины и образована тканьем множества нитей плетения, включающих визуально различимые нити, в соответствии...
Тип: Изобретение
Номер охранного документа: 0002667835
Дата охранного документа: 24.09.2018
25.09.2018
№218.016.8af1

Способ оценки релевантной точки на кривой для обнаружения аномалии двигателя и система обработки данных для его осуществления

Изобретение относится к области авиации, в частности к способу оценки релевантной точки на кривой для обнаружения аномалии двигателя. Указанная кривая отображает изменение в зависимости от времени физических параметров работы двигателя, измеряемых датчиками на указанном двигателе. Способ...
Тип: Изобретение
Номер охранного документа: 0002667794
Дата охранного документа: 24.09.2018
Showing 1-1 of 1 item.
22.01.2019
№219.016.b286

Способ мониторинга деградации бортового устройства летательного аппарата, включающий в себя определение порога подсчета

Изобретение относится к способу мониторинга деградации бортового устройства летательного аппарата во время его работы. Для этого с помощью вычислительного устройства определяют степень деградации бортового устройства по показателю дефектности, который определяют подсчитыванием возникающих...
Тип: Изобретение
Номер охранного документа: 0002677757
Дата охранного документа: 21.01.2019
+ добавить свой РИД