×
10.05.2018
218.016.4274

Результат интеллектуальной деятельности: СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002649518
Дата охранного документа
03.04.2018
Аннотация: Объектом изобретения является способ обеспечения обнаружения повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, до первого датчика давления и второго датчика давления вычислительного устройства. При этом способ содержит следующие этапы: измеряют первое давление воздуха на уровне первого датчика давления; измеряют второе давление воздуха на уровне второго датчика давления; определяют теоретическое давление воздушного потока на выходе компрессора высокого давления; осуществляют первую проверку разности между первым значением и теоретическим давлением; осуществляют вторую проверку разности между вторым значением и теоретическим давлением; осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае. Также представлено вычислительное устройство, содержащее набор команд, позволяющих осуществлять способ обеспечения обнаружения повреждения трубопровода. Изобретение содействует обнаружению повреждения трубопровода в турбореактивном двигателе. 2 н. и 6 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к общей области турбореактивных двигателей. В частности, оно касается способа содействия обнаружению повреждения трубопровода в турбореактивном двигателе.

УРОВЕНЬ ТЕХНИКИ

В турбореактивном двигателе воздух, поступающий в компрессор, сжимается, после чего смешивается с топливом и сгорает в камере сгорания. Горячие газы, производимые в камере, приводят во вращение одну или несколько турбин на выходе, после чего выбрасываются наружу. Кроме того, турбореактивный двигатель содержит вычислительное устройство, обеспечивающее функции регулирования мощности и общего электронного управления: например, вычислительное устройство управляет расходом топлива, состоянием ограничителей, разгрузочными вентилями или системами установки угла поворота направляющих лопаток турбореактивного двигателя.

Как правило, компрессор разделен на две части: компрессор низкого давления (НД), за которым следует компрессор высокого давления (ВД). Кроме того, каждый из этих двух компрессоров обычно состоит из нескольких ступеней; при этом последняя ступень компрессора ВД является ступенью, за которой сразу находится камера сгорания. Компрессор предназначен для сжатия воздуха, чтобы привести его к оптимальным значениям скорости, давления и температуры на входе камеры сгорания, при этом отслеживание статического давления на уровне выхода последней ступени компрессора ВД имеет первостепенное значение. Это измерение служит для контроля турбореактивного двигателя и дозировки топлива.

На фиг. 1 схематично показан турбореактивный двигатель ТВ, содержащий устройство измерения статического давления на уровне выхода S компрессора СМР высокого давления. Для упрощения описания в дальнейшем тексте это давление будет называться PS3.

Как показано на фиг. 1, турбореактивный двигатель ТВ содержит, в частности, вычислительное устройство СТ и трубопровод CNL, который подводит воздух на выходе компрессора ВД СМР к вычислительному устройству СТ. Внутри вычислительного устройства СТ блок давления измеряет и преобразует давление поступающего воздуха при помощи датчика давления СР. Впоследствии эту информацию используют для контроля двигателя и обнаружения неисправностей.

Однако, как показывает опыт, значительное количество неисправностей появляется по причине ошибочного измерения давления PS3, например, ускорение, более медленное, чем нормальное, потеря тяги или невозможность достичь требуемой тяги. Эти неисправности чаще всего появляются, когда самолету нужна сильная тяга, то есть во время взлета, в фазе набора высоты или захода на посадку, и могут привести к намеренному выключению турбореактивного двигателя экипажем.

Для повышения надежности измерения, как правило, датчик давления СР дублируют. В этом случае два датчика давления СР1, СР2 измеряют давление поступающего воздуха, при этом проверяют, чтобы разность между двумя измерениями не была дивергентной. В случае дивергентных значений измерений оба значения сравнивают с теоретическим значением давления PS3, определенным в соответствии с моделью, введенной в вычислительное устройство СТ, что позволяет локализовать неисправный датчик давления.

Однако, если этот тест позволяет выявить нарушение в работе датчика, он не позволяет выявить дефект на трубопроводе. Действительно, на уровне трубопровода можно отметить большое количество дефектов, в частности:

- ослабление соединения трубопровода на уровне вычислительного устройства, часто после промывки турбореактивного двигателя, во время которой трубопровод отсоединяют;

- присутствие льда или воды на уровне соединения трубопровода с вычислительным устройством;

- присутствие льда или воды внутри трубопровода;

- появление отверстий в трубопроводе, например, в результате периодического трения с окружающими системами.

Все эти дефекты являются причиной недооценки давления PS3. Например, забитый или перфорированный трубопровод создает потерю напора, снижающую давление, измеряемое датчиком, на выходе места дефекта. При этом расход утечки зависит от статического давления на уровне выхода компрессора ВД, а также от площади утечки. Чем выше давление PS3 или чем больше размер дефекта, тем больше расход утекающего воздуха. Кроме того, потеря напора зависит от расхода утечки. Таким образом, потеря напора тем больше, чем серьезнее дефект и/или чем выше давление PS3.

В настоящее время единственным способом обнаружения дефекта на уровне трубопровода является визуальный осмотр оператором, отвечающим за обслуживание, либо случайно во время операции обслуживания, либо целенаправленно в результате происшествия (намеренная или ненамеренная остановка турбореактивного двигателя во время полета, потеря тяги, невозможность запуска и т.д.).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение призвано решить вышеупомянутые проблемы и предложить способ обеспечения обнаружения повреждения рассматриваемого трубопровода.

Таким образом, первым объектом изобретения является способ содействия обнаружению повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью подвода потока сжатого воздуха, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, к первому датчику давления и второму датчику давления вычислительного устройства.

Способ содержит следующие этапы:

- Этап А: измеряют первое давление воздуха на уровне первого датчика давления;

- Этап В: измеряют второе давление воздуха на уровне второго датчика давления;

- Этап С: определяют теоретическое давление воздушного потока на выходе компрессора высокого давления;

- Этап D: осуществляют первую проверку разности, включающую в себя следующие подэтапы:

- вычисляют первое значение, равное разности между теоретическим давлением и первым давлением;

- сравнивают первое значение с порогом, при этом первая проверка разности является положительной, если первое значение превышает порог, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности, включающую в себя следующие подэтапы:

- вычисляют второе значение, равное разности между теоретическим давлением и вторым давлением;

- сравнивают второе значение с порогом, при этом вторая проверка разности является положительной, если второе значение превышает порог, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае.

В случае положительной конечной проверки можно предположить, что трубопровод имеет дефект. Иначе говоря, положительная конечная проверка является эффективным показателем наличия повреждения трубопровода. Последующий визуальный осмотр позволяет подтвердить, что трубопровод действительно поврежден.

Кроме указанных выше отличительных признаков, заявленный способ может иметь один или несколько следующих дополнительных признаков, которые можно рассматривать индивидуально или во всех технически возможных комбинациях.

Так, в не ограничительном варианте осуществления этап А и этап В осуществляют почти одновременно. Это значит, что два измерения давления отстоят друг от друга во времени максимум на значение времени, равное периоду вычислительного устройства.

В варианте осуществления этапы А, В, С, D, E и F повторяют, например, периодически. Это позволяет подтвердить, что трубопровод имеет дефект.

В варианте осуществления период осуществления этапов А, В, С, D, E и F по существу равен периоду вычислительного устройства. Иначе говоря, конечную проверку осуществляют за каждый период вычислительного устройства. Это обеспечивает быстрое обнаружение дефекта на трубопроводе. В другом варианте осуществления конечные проверки отстоят друг от друга на более продолжительные промежутки времени. Это позволяет уменьшить вычисления внутри вычислительного устройства.

В предпочтительном варианте осуществления после произведенных N последовательных конечных проверок способ содержит этап Н включения тревожного сигнала, при этом N является положительным целым числом. Считается, что после N положительных проверок трубопровод действительно имеет дефект.

В варианте осуществления способ содержит этап I регулирования порогового значения в зависимости от теоретического давления воздушного потока. Порог является, например, значением в процентах теоретического давления. Этап I осуществляют после этапа С.

В предпочтительном варианте осуществления пороговое значение регулируют по максимальному значению между 10 psi (фунтов на квадратный дюйм) и 5% теоретического давления воздушного потока.

Вторым объектом изобретения является компьютерная программа, содержащая набор команд, которые при их исполнении вычислительным устройством позволяют осуществлять заявленный способ.

Изобретение и его различные детали будут более понятны из нижеследующего описания со ссылками на прилагаемые фигуры.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фигуры представлены в качестве иллюстрации не ограничительных примеров изобретения. На этих фигурах:

Фиг. 1 (уже описана) - схематичный вид турбореактивного двигателя, содержащего устройство измерения статического давления на уровне выходе компрессора ВД упомянутого турбореактивного двигателя.

Фиг. 2 - блок-схема способа согласно варианту осуществления изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Предложенный изобретением способ предназначен для применения внутри турбореактивного двигателя ТВ, описанного выше со ссылками на фиг. 1. Так, турбореактивный двигатель ТВ содержит компрессор высокого давления СМР, вычислительное устройство СТ и трубопровод CNL, соединяющий вычислительное устройство СТ с выходом S компрессора высокого давления СМР.

Вычислительное устройство СТ содержит первый датчик давления СР1 и второй датчик давления СР2. Трубопровод CNL выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе S компрессора высокого давления СМР, до первого датчика давления СР1 и второго датчика давления СР2.

Способ основан на идее, согласно которой дефект на трубопроводе CNL отражается на измерениях двух датчиков давления СР1, СР2, так как трубопровод CNL является общим элементом цепи измерения давления PS3.

На фиг. 2 представлена блок-схема способа МЕТН согласно варианту осуществления изобретения. Способ МЕТН содержит следующие этапы:

- Этап А: измеряют первое давление воздуха Р1 на уровне первого датчика давления СР1;

- Этап В: измеряют второе давление воздуха Р2 на уровне второго датчика давления СР2. Оба измерения давления Р1, Р2 осуществляют в реальном времени и почти одновременно. «Почти одновременно» значит, что если вычислительное устройство СТ работает с частотой f, оба измерения давления Р1, Р2 осуществляют в течение временного периода 1/f;

- Этап С: определяют (оценивают) теоретическое давление Pth воздушного потока на выходе S компрессора высокого давления СМР. Модель, введенная в вычислительное устройство СТ, позволяет вычислять в реальном времени это теоретическое значение Pth. Детальное применение этой модели известно из уровня техники, и ее подробное описание опускается. Следует отметить, что вне рамок заявленного способа значение теоретического давления Pth можно использовать для определения наличия неисправности одного из датчиков давления СР1, СР2, как было указано в части «Уровень техники»;

- Этап I: вычисляют пороговое значение S в зависимости от теоретического давления Pth воздушного потока. В идеале, для турбореактивных двигателей типа CFM56-7B порог регулируют таким образом, чтобы он был по существу равен максимальному значению между 10 psi (фунтов на квадратный дюйм), то есть около 0,7 бар, и 5% теоретического значения Pth. Так, если теоретическое давление Pth равно 30 psi, то пороговое значение S равно 10 psi. Если теоретическое давление Pth равно 300 psi, то пороговое значение S равно 15 psi;

- Этап D: осуществляют первую проверку разности Т1, включающую в себя следующие подэтапы:

- Подэтап Da: вычисляют первое значение V1, равное разности между теоретическим давлением Pth и первым давлением P1;

- Подэтап Db: сравнивают первое значение V1 с порогом S, при этом первая проверка разности T1 является положительной, если первое значение V1 превышает порог S, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности T2, включающую в себя следующие подэтапы:

- Подэтап Ea: вычисляют второе значение V2, равное разности между теоретическим давлением Pth и вторым давлением P2

- Подэтап Eb: сравнивают второе значение V2 с порогом S, при этом вторая проверка разности T2 является положительной, если второе значение V2 превышает порог S, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку Tf, которая является положительной, если первая проверка разности T1 и вторая проверка разности T2 оказались положительными, и отрицательной в противном случае;

- Этап G: Этапы А-F повторяют, например, до получения команды на остановку способа или в течение определенного времени или определенное количество раз. Предпочтительно этапы A-F осуществляют периодически, в идеале с частотой f, эквивалентной частоте вычислительного устройства СТ;

- Этап Н: после N последовательных положительных конечных проверок Tf включают тревожный сигнал, при этом N является положительным целым числом. Обычно тревожный сигнал включают, если конечные проверки Tf показывают положительные результаты в течение 4,8 секунды. Если конечные проверки Tf осуществляют с частотой 15 миллисекунд (которая, как правило, является порядком величины частоты вычислительного устройства), то тревожный сигнал включают после N=320 констатаций положительных конечных проверок Tf. Вместе с тем, с учетом мощности вычислительного устройства СТ, установленного в турбореактивном двигателе ТВ, желательно уменьшать частоту констатаций и тем самым снизить нагрузку на вычислительное устройство СТ. Например, если конечные проверки Tf осуществляют с частотой 120 миллисекунд, то тревожный сигнал включают после 40 констатаций положительных конечных проверок Tf. Отмечается, что, поскольку выявляемая неисправность является физической (например, речь идет об утечке в трубопроводе), а не электрической, частоту измерения можно уменьшить, что все же не приводит к снижению надежности способа МЕТН.

Включение тревожного сигнала состоит в передаче информации о неисправности из вычислительного устройства СТ в систему обслуживания. При этом в зависимости от серьезности неисправности система обслуживания принимает решение о выведении или не выведении сигнала на дисплей кабины экипажа. Поскольку измерение давления PS3 является основополагающим при контроле газотурбинного двигателя ТВ, информация о неисправности поступает в кабину экипажа в виде оранжевого сигнала, указывающего на проблему на уровне системы регулирования газотурбинного двигателя ТВ.

Таким образом, согласно описанному способу МЕТН, если конечные проверки Tf дают положительные результаты одновременно на двух локальных каналах, соответствующих двум измерениям давления, причем в течение определенного времени, появляется сигнал неисправности «Повреждение трубопровода PS3».

Следует отметить, что:

- когда газотурбинный двигатель ТВ выключен, способ МЕТН не может обнаружить дефект на трубопроводе CNL, так как давление PS3 равно окружающему давлению;

- после запуска газотурбинного двигателя ТВ потеря напора, связанная с повреждением на трубопроводе CNL, будет более или менее явной в зависимости от тяги газотурбинного двигателя:

- в режиме малого газа тяга является минимальной, следовательно, давление PS3 тоже является минимальным. В зависимости от серьезности повреждения потеря напора может быть слабой, и, следовательно, ее обнаружение затруднено;

- чем больше задаваемая тяга, тем больше потеря напора, и становится возможным обнаружить дефект.

Следует также отметить, что минимальная обнаруживаемая потеря напора напрямую связана с точностью модели вычисления теоретического давления Pth, а также с точностью цепи измерения давлений Р1, Р2. Как правило, эта точность зависит от измеряемых давлений Р1, Р2, при этом точность снижается с повышением давления. Следовательно, пороговое значение S можно устанавливать тем ниже, чем выше точность модели и измерений.


СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 111-120 of 234 items.
30.05.2019
№219.017.6bae

Способ создания частотной несогласованности между лопатками лопаточного колеса газотурбинного двигателя и соответствующее лопаточное колесо

Предложенное изобретение относится к способу создания частотной несогласованности между лопатками лопаточного колеса газотурбинного двигателя относительно выбранной собственной вибрационной моды лопаточного колеса, содержащего диск и N лопаток. При осуществлении способа выбирают собственную...
Тип: Изобретение
Номер охранного документа: 0002689489
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.71ac

Способ изготовления лопатки газотурбинного двигателя из композиционного материала

Изобретение относится к способу изготовления лопатки (100) газотурбинного двигателя из композиционного материала, содержащей волокнистое усиление, уплотненное матрицей. При этом способ включает в себя осуществление многослойного тканья для получения первой волокнистой заготовки (1) в виде...
Тип: Изобретение
Номер охранного документа: 0002689618
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.7258

Способ и система оценки расхода текучей среды

Система (10) оценки расхода текучей среды, поступающей из бака (20, 21), содержащая средства (17, 22, 23) измерения, выполненные с возможностью измерения уровня текучей среды в баке (20, 21), отличающаяся тем, что содержит средства расчета расхода текучей среды при помощи сигма-точечного...
Тип: Изобретение
Номер охранного документа: 0002690080
Дата охранного документа: 30.05.2019
04.06.2019
№219.017.732f

Композитная лопатка, содержащая полку с элементом жесткости

Изобретение относится к волокнистой заготовке для лопатки газотурбинного двигателя. Техническим результатом является повышение равномерности деформации полки лопатки под действием центробежной силы во время работы газотурбинного двигателя. Технический результат достигается волокнистой...
Тип: Изобретение
Номер охранного документа: 0002690350
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7472

Устройство и способ ремонта отверстия детали

Группа изобретений относится к области обслуживания и ремонта деталей и, в частности, касается устройства и способа ремонта отверстия детали, в частности, из композиционного материала. Устройство для ремонта отверстия детали содержит емкость для смолы, инжекционный наконечник, соединенный с...
Тип: Изобретение
Номер охранного документа: 0002690466
Дата охранного документа: 03.06.2019
08.06.2019
№219.017.7595

Способ и устройство для монтажа двигателя на пилоне летательного аппарата

Изобретение относится к монтажу двигателя на пилоне летательного аппарата. Способ монтажа двигателя (1) на пилоне летательного аппарата заключается в подъеме двигателя в вертикальном направлении до пилона, стыковке с пилоном путем перемещения двигателя в другом направлении. При этом...
Тип: Изобретение
Номер охранного документа: 0002690834
Дата охранного документа: 05.06.2019
08.06.2019
№219.017.7597

Маслосборная крышка для агрегата газотурбинного двигателя

Кольцевая маслосборная крышка агрегата газотурбинного двигателя, выполненная с возможностью расположения вокруг агрегата и с возможностью вращения вокруг оси, содержит сквозные отверстия для радиального прохождения масла за счет центробежного эффекта, а также средства отклонения масла. Средства...
Тип: Изобретение
Номер охранного документа: 0002690900
Дата охранного документа: 06.06.2019
13.06.2019
№219.017.80c4

Устройство охлаждения корпуса турбины газотурбинного двигателя

Изобретение относится к устройству охлаждения корпуса турбины газотурбинного двигателя, содержащему множество коллекторов (16’), выполненных с возможностью нагнетания воздуха на корпус турбины. При этом коллекторы расположены рядом друг с другом, и каждый коллектор содержит основное кольцо...
Тип: Изобретение
Номер охранного документа: 0002691241
Дата охранного документа: 11.06.2019
02.07.2019
№219.017.a2f8

Ротор газотурбинного двигателя, содержащий лопатки с присоединяемыми платформами, и газотурбинный двигатель, содержащий такой ротор

Ротор газотурбинного двигателя содержит диск, множество лопаток и множество платформ. Диск имеет на своей периферии первичные пазы, а каждая лопатка содержит ножку, имеющую в нижней части утолщение, блокируемое в осевом направлении в первичных пазах. Каждая платформа расположена между двумя...
Тип: Изобретение
Номер охранного документа: 0002692863
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a323

Лопатка турбины, диск турбины и турбина газотурбинного двигателя

Лопатка турбины газотурбинного двигателя содержит спинку, корытце, переднюю кромку, заднюю кромку и полость в своей вершине. Полость в вершине лопатки имеет внутреннее ребро, проходящее от точки соединения бортика указанной полости со стороны спинки к точке соединения бортика указанной полости...
Тип: Изобретение
Номер охранного документа: 0002692938
Дата охранного документа: 28.06.2019
Showing 1-1 of 1 item.
22.01.2019
№219.016.b286

Способ мониторинга деградации бортового устройства летательного аппарата, включающий в себя определение порога подсчета

Изобретение относится к способу мониторинга деградации бортового устройства летательного аппарата во время его работы. Для этого с помощью вычислительного устройства определяют степень деградации бортового устройства по показателю дефектности, который определяют подсчитыванием возникающих...
Тип: Изобретение
Номер охранного документа: 0002677757
Дата охранного документа: 21.01.2019
+ добавить свой РИД