×
10.05.2018
218.016.4274

СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002649518
Дата охранного документа
03.04.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Объектом изобретения является способ обеспечения обнаружения повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, до первого датчика давления и второго датчика давления вычислительного устройства. При этом способ содержит следующие этапы: измеряют первое давление воздуха на уровне первого датчика давления; измеряют второе давление воздуха на уровне второго датчика давления; определяют теоретическое давление воздушного потока на выходе компрессора высокого давления; осуществляют первую проверку разности между первым значением и теоретическим давлением; осуществляют вторую проверку разности между вторым значением и теоретическим давлением; осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае. Также представлено вычислительное устройство, содержащее набор команд, позволяющих осуществлять способ обеспечения обнаружения повреждения трубопровода. Изобретение содействует обнаружению повреждения трубопровода в турбореактивном двигателе. 2 н. и 6 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к общей области турбореактивных двигателей. В частности, оно касается способа содействия обнаружению повреждения трубопровода в турбореактивном двигателе.

УРОВЕНЬ ТЕХНИКИ

В турбореактивном двигателе воздух, поступающий в компрессор, сжимается, после чего смешивается с топливом и сгорает в камере сгорания. Горячие газы, производимые в камере, приводят во вращение одну или несколько турбин на выходе, после чего выбрасываются наружу. Кроме того, турбореактивный двигатель содержит вычислительное устройство, обеспечивающее функции регулирования мощности и общего электронного управления: например, вычислительное устройство управляет расходом топлива, состоянием ограничителей, разгрузочными вентилями или системами установки угла поворота направляющих лопаток турбореактивного двигателя.

Как правило, компрессор разделен на две части: компрессор низкого давления (НД), за которым следует компрессор высокого давления (ВД). Кроме того, каждый из этих двух компрессоров обычно состоит из нескольких ступеней; при этом последняя ступень компрессора ВД является ступенью, за которой сразу находится камера сгорания. Компрессор предназначен для сжатия воздуха, чтобы привести его к оптимальным значениям скорости, давления и температуры на входе камеры сгорания, при этом отслеживание статического давления на уровне выхода последней ступени компрессора ВД имеет первостепенное значение. Это измерение служит для контроля турбореактивного двигателя и дозировки топлива.

На фиг. 1 схематично показан турбореактивный двигатель ТВ, содержащий устройство измерения статического давления на уровне выхода S компрессора СМР высокого давления. Для упрощения описания в дальнейшем тексте это давление будет называться PS3.

Как показано на фиг. 1, турбореактивный двигатель ТВ содержит, в частности, вычислительное устройство СТ и трубопровод CNL, который подводит воздух на выходе компрессора ВД СМР к вычислительному устройству СТ. Внутри вычислительного устройства СТ блок давления измеряет и преобразует давление поступающего воздуха при помощи датчика давления СР. Впоследствии эту информацию используют для контроля двигателя и обнаружения неисправностей.

Однако, как показывает опыт, значительное количество неисправностей появляется по причине ошибочного измерения давления PS3, например, ускорение, более медленное, чем нормальное, потеря тяги или невозможность достичь требуемой тяги. Эти неисправности чаще всего появляются, когда самолету нужна сильная тяга, то есть во время взлета, в фазе набора высоты или захода на посадку, и могут привести к намеренному выключению турбореактивного двигателя экипажем.

Для повышения надежности измерения, как правило, датчик давления СР дублируют. В этом случае два датчика давления СР1, СР2 измеряют давление поступающего воздуха, при этом проверяют, чтобы разность между двумя измерениями не была дивергентной. В случае дивергентных значений измерений оба значения сравнивают с теоретическим значением давления PS3, определенным в соответствии с моделью, введенной в вычислительное устройство СТ, что позволяет локализовать неисправный датчик давления.

Однако, если этот тест позволяет выявить нарушение в работе датчика, он не позволяет выявить дефект на трубопроводе. Действительно, на уровне трубопровода можно отметить большое количество дефектов, в частности:

- ослабление соединения трубопровода на уровне вычислительного устройства, часто после промывки турбореактивного двигателя, во время которой трубопровод отсоединяют;

- присутствие льда или воды на уровне соединения трубопровода с вычислительным устройством;

- присутствие льда или воды внутри трубопровода;

- появление отверстий в трубопроводе, например, в результате периодического трения с окружающими системами.

Все эти дефекты являются причиной недооценки давления PS3. Например, забитый или перфорированный трубопровод создает потерю напора, снижающую давление, измеряемое датчиком, на выходе места дефекта. При этом расход утечки зависит от статического давления на уровне выхода компрессора ВД, а также от площади утечки. Чем выше давление PS3 или чем больше размер дефекта, тем больше расход утекающего воздуха. Кроме того, потеря напора зависит от расхода утечки. Таким образом, потеря напора тем больше, чем серьезнее дефект и/или чем выше давление PS3.

В настоящее время единственным способом обнаружения дефекта на уровне трубопровода является визуальный осмотр оператором, отвечающим за обслуживание, либо случайно во время операции обслуживания, либо целенаправленно в результате происшествия (намеренная или ненамеренная остановка турбореактивного двигателя во время полета, потеря тяги, невозможность запуска и т.д.).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение призвано решить вышеупомянутые проблемы и предложить способ обеспечения обнаружения повреждения рассматриваемого трубопровода.

Таким образом, первым объектом изобретения является способ содействия обнаружению повреждения трубопровода, при этом упомянутый трубопровод выполнен с возможностью подвода потока сжатого воздуха, отбираемого на выходе компрессора высокого давления газотурбинного двигателя, к первому датчику давления и второму датчику давления вычислительного устройства.

Способ содержит следующие этапы:

- Этап А: измеряют первое давление воздуха на уровне первого датчика давления;

- Этап В: измеряют второе давление воздуха на уровне второго датчика давления;

- Этап С: определяют теоретическое давление воздушного потока на выходе компрессора высокого давления;

- Этап D: осуществляют первую проверку разности, включающую в себя следующие подэтапы:

- вычисляют первое значение, равное разности между теоретическим давлением и первым давлением;

- сравнивают первое значение с порогом, при этом первая проверка разности является положительной, если первое значение превышает порог, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности, включающую в себя следующие подэтапы:

- вычисляют второе значение, равное разности между теоретическим давлением и вторым давлением;

- сравнивают второе значение с порогом, при этом вторая проверка разности является положительной, если второе значение превышает порог, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку, которая является положительной, если первая проверка разности и вторая проверка разности оказались положительными, и отрицательной в противном случае.

В случае положительной конечной проверки можно предположить, что трубопровод имеет дефект. Иначе говоря, положительная конечная проверка является эффективным показателем наличия повреждения трубопровода. Последующий визуальный осмотр позволяет подтвердить, что трубопровод действительно поврежден.

Кроме указанных выше отличительных признаков, заявленный способ может иметь один или несколько следующих дополнительных признаков, которые можно рассматривать индивидуально или во всех технически возможных комбинациях.

Так, в не ограничительном варианте осуществления этап А и этап В осуществляют почти одновременно. Это значит, что два измерения давления отстоят друг от друга во времени максимум на значение времени, равное периоду вычислительного устройства.

В варианте осуществления этапы А, В, С, D, E и F повторяют, например, периодически. Это позволяет подтвердить, что трубопровод имеет дефект.

В варианте осуществления период осуществления этапов А, В, С, D, E и F по существу равен периоду вычислительного устройства. Иначе говоря, конечную проверку осуществляют за каждый период вычислительного устройства. Это обеспечивает быстрое обнаружение дефекта на трубопроводе. В другом варианте осуществления конечные проверки отстоят друг от друга на более продолжительные промежутки времени. Это позволяет уменьшить вычисления внутри вычислительного устройства.

В предпочтительном варианте осуществления после произведенных N последовательных конечных проверок способ содержит этап Н включения тревожного сигнала, при этом N является положительным целым числом. Считается, что после N положительных проверок трубопровод действительно имеет дефект.

В варианте осуществления способ содержит этап I регулирования порогового значения в зависимости от теоретического давления воздушного потока. Порог является, например, значением в процентах теоретического давления. Этап I осуществляют после этапа С.

В предпочтительном варианте осуществления пороговое значение регулируют по максимальному значению между 10 psi (фунтов на квадратный дюйм) и 5% теоретического давления воздушного потока.

Вторым объектом изобретения является компьютерная программа, содержащая набор команд, которые при их исполнении вычислительным устройством позволяют осуществлять заявленный способ.

Изобретение и его различные детали будут более понятны из нижеследующего описания со ссылками на прилагаемые фигуры.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фигуры представлены в качестве иллюстрации не ограничительных примеров изобретения. На этих фигурах:

Фиг. 1 (уже описана) - схематичный вид турбореактивного двигателя, содержащего устройство измерения статического давления на уровне выходе компрессора ВД упомянутого турбореактивного двигателя.

Фиг. 2 - блок-схема способа согласно варианту осуществления изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ПО МЕНЬШЕЙ МЕРЕ ОДНОГО ВАРИАНТА ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Предложенный изобретением способ предназначен для применения внутри турбореактивного двигателя ТВ, описанного выше со ссылками на фиг. 1. Так, турбореактивный двигатель ТВ содержит компрессор высокого давления СМР, вычислительное устройство СТ и трубопровод CNL, соединяющий вычислительное устройство СТ с выходом S компрессора высокого давления СМР.

Вычислительное устройство СТ содержит первый датчик давления СР1 и второй датчик давления СР2. Трубопровод CNL выполнен с возможностью доставки сжатого воздушного потока, отбираемого на выходе S компрессора высокого давления СМР, до первого датчика давления СР1 и второго датчика давления СР2.

Способ основан на идее, согласно которой дефект на трубопроводе CNL отражается на измерениях двух датчиков давления СР1, СР2, так как трубопровод CNL является общим элементом цепи измерения давления PS3.

На фиг. 2 представлена блок-схема способа МЕТН согласно варианту осуществления изобретения. Способ МЕТН содержит следующие этапы:

- Этап А: измеряют первое давление воздуха Р1 на уровне первого датчика давления СР1;

- Этап В: измеряют второе давление воздуха Р2 на уровне второго датчика давления СР2. Оба измерения давления Р1, Р2 осуществляют в реальном времени и почти одновременно. «Почти одновременно» значит, что если вычислительное устройство СТ работает с частотой f, оба измерения давления Р1, Р2 осуществляют в течение временного периода 1/f;

- Этап С: определяют (оценивают) теоретическое давление Pth воздушного потока на выходе S компрессора высокого давления СМР. Модель, введенная в вычислительное устройство СТ, позволяет вычислять в реальном времени это теоретическое значение Pth. Детальное применение этой модели известно из уровня техники, и ее подробное описание опускается. Следует отметить, что вне рамок заявленного способа значение теоретического давления Pth можно использовать для определения наличия неисправности одного из датчиков давления СР1, СР2, как было указано в части «Уровень техники»;

- Этап I: вычисляют пороговое значение S в зависимости от теоретического давления Pth воздушного потока. В идеале, для турбореактивных двигателей типа CFM56-7B порог регулируют таким образом, чтобы он был по существу равен максимальному значению между 10 psi (фунтов на квадратный дюйм), то есть около 0,7 бар, и 5% теоретического значения Pth. Так, если теоретическое давление Pth равно 30 psi, то пороговое значение S равно 10 psi. Если теоретическое давление Pth равно 300 psi, то пороговое значение S равно 15 psi;

- Этап D: осуществляют первую проверку разности Т1, включающую в себя следующие подэтапы:

- Подэтап Da: вычисляют первое значение V1, равное разности между теоретическим давлением Pth и первым давлением P1;

- Подэтап Db: сравнивают первое значение V1 с порогом S, при этом первая проверка разности T1 является положительной, если первое значение V1 превышает порог S, и отрицательной в противном случае;

- Этап Е: осуществляют вторую проверку разности T2, включающую в себя следующие подэтапы:

- Подэтап Ea: вычисляют второе значение V2, равное разности между теоретическим давлением Pth и вторым давлением P2

- Подэтап Eb: сравнивают второе значение V2 с порогом S, при этом вторая проверка разности T2 является положительной, если второе значение V2 превышает порог S, и отрицательной в противном случае;

- Этап F: осуществляют конечную проверку Tf, которая является положительной, если первая проверка разности T1 и вторая проверка разности T2 оказались положительными, и отрицательной в противном случае;

- Этап G: Этапы А-F повторяют, например, до получения команды на остановку способа или в течение определенного времени или определенное количество раз. Предпочтительно этапы A-F осуществляют периодически, в идеале с частотой f, эквивалентной частоте вычислительного устройства СТ;

- Этап Н: после N последовательных положительных конечных проверок Tf включают тревожный сигнал, при этом N является положительным целым числом. Обычно тревожный сигнал включают, если конечные проверки Tf показывают положительные результаты в течение 4,8 секунды. Если конечные проверки Tf осуществляют с частотой 15 миллисекунд (которая, как правило, является порядком величины частоты вычислительного устройства), то тревожный сигнал включают после N=320 констатаций положительных конечных проверок Tf. Вместе с тем, с учетом мощности вычислительного устройства СТ, установленного в турбореактивном двигателе ТВ, желательно уменьшать частоту констатаций и тем самым снизить нагрузку на вычислительное устройство СТ. Например, если конечные проверки Tf осуществляют с частотой 120 миллисекунд, то тревожный сигнал включают после 40 констатаций положительных конечных проверок Tf. Отмечается, что, поскольку выявляемая неисправность является физической (например, речь идет об утечке в трубопроводе), а не электрической, частоту измерения можно уменьшить, что все же не приводит к снижению надежности способа МЕТН.

Включение тревожного сигнала состоит в передаче информации о неисправности из вычислительного устройства СТ в систему обслуживания. При этом в зависимости от серьезности неисправности система обслуживания принимает решение о выведении или не выведении сигнала на дисплей кабины экипажа. Поскольку измерение давления PS3 является основополагающим при контроле газотурбинного двигателя ТВ, информация о неисправности поступает в кабину экипажа в виде оранжевого сигнала, указывающего на проблему на уровне системы регулирования газотурбинного двигателя ТВ.

Таким образом, согласно описанному способу МЕТН, если конечные проверки Tf дают положительные результаты одновременно на двух локальных каналах, соответствующих двум измерениям давления, причем в течение определенного времени, появляется сигнал неисправности «Повреждение трубопровода PS3».

Следует отметить, что:

- когда газотурбинный двигатель ТВ выключен, способ МЕТН не может обнаружить дефект на трубопроводе CNL, так как давление PS3 равно окружающему давлению;

- после запуска газотурбинного двигателя ТВ потеря напора, связанная с повреждением на трубопроводе CNL, будет более или менее явной в зависимости от тяги газотурбинного двигателя:

- в режиме малого газа тяга является минимальной, следовательно, давление PS3 тоже является минимальным. В зависимости от серьезности повреждения потеря напора может быть слабой, и, следовательно, ее обнаружение затруднено;

- чем больше задаваемая тяга, тем больше потеря напора, и становится возможным обнаружить дефект.

Следует также отметить, что минимальная обнаруживаемая потеря напора напрямую связана с точностью модели вычисления теоретического давления Pth, а также с точностью цепи измерения давлений Р1, Р2. Как правило, эта точность зависит от измеряемых давлений Р1, Р2, при этом точность снижается с повышением давления. Следовательно, пороговое значение S можно устанавливать тем ниже, чем выше точность модели и измерений.


СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
СПОСОБ СОДЕЙСТВИЯ ОБНАРУЖЕНИЮ ПОВРЕЖДЕНИЯ ТРУБОПРОВОДА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 1-10 of 234 items.
20.01.2018
№218.016.1534

Способ обнаружения неисправности вентиля в газотурбинном двигателе

Объектом изобретения является способ контроля вентиля в газотурбинном двигателе, при этом упомянутый вентиль производит переключение в ответ на команду (С), переданную в определенный момент (t), при этом упомянутый способ содержит этап (Е2) вычисления первой формы (S1) временного сигнала (S(t))...
Тип: Изобретение
Номер охранного документа: 0002634993
Дата охранного документа: 08.11.2017
10.05.2018
№218.016.48d7

Коробка приводов для авиационного газотурбинного двигателя

Коробка приводов содержит картер, образующий камеру для размещения смазываемых маслом вращающихся элементов, трубчатую муфту, соединяемую с вращающимися элементами и выполненную с возможностью приведения во вращение вала, а также средства сбора масла для смазки вращающихся элементов и доставки...
Тип: Изобретение
Номер охранного документа: 0002651004
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.55d3

Способ и устройство контроля параметра ракетного двигателя

Изобретение относится к общей области аэронавтики, в частности оно относится к контролю ракетного двигателя. Способ содержит: этап (Е10) получения измерения контролируемого параметра, измеряемого датчиком и соответствующего рабочей точке двигателя, причем эту рабочую точку определяют по меньшей...
Тип: Изобретение
Номер охранного документа: 0002654310
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5fe3

Способ изготовления мартенситно-стареющей стали

Изобретение относится к области металлургии и может быть использовано для изготовления стального слитка из мартенситно-стареющей стали. В способе осуществляют стадию изготовления методом вакуумной плавки переплавляемого электрода, содержащего от 0,2 до 3,0 мас.% титана и от 0,0025...
Тип: Изобретение
Номер охранного документа: 0002656899
Дата охранного документа: 07.06.2018
05.07.2018
№218.016.6ae5

Способ и устройство для изготовления композитной лопатки

Изобретение относится к способу изготовления композитной лопатки турбомашины, а также к устройству уплотнения, используемому в этом способе. Композитной лопаткой может быть лопатка, содержащая заготовку из нитей или волокон, выполненную посредством трехмерного тканья, и связующее, удерживающее...
Тип: Изобретение
Номер охранного документа: 0002659995
Дата охранного документа: 04.07.2018
10.07.2018
№218.016.6f3c

Система и способ экстренного запуска газотурбинного двигателя летательного аппарата

Предложена система экстренного запуска газотурбинного двигателя, содержащая, по меньшей мере, один газогенератор на твердом ракетном топливе, электрически управляемое устройство воспламенения, вычислительное устройство, связанное с устройством воспламенения, и, по меньшей мере, два независимых...
Тип: Изобретение
Номер охранного документа: 0002660725
Дата охранного документа: 09.07.2018
19.07.2018
№218.016.7289

Волокнистая заготовка для полой лопатки газотурбинного двигателя

Изобретение относится к волокнистой заготовке для полой лопатки газотурбинного двигателя, к такой полой лопатке и способу изготовления такой полой лопатки. Изобретение также относится к газотурбинному двигателю и летательному аппарату, содержащим такую полую лопатку. Волокнистая заготовка для...
Тип: Изобретение
Номер охранного документа: 0002661582
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.75c9

Противопожарная защита картера вентилятора из композиционного материала

Изобретение относится к противопожарной защите картера газовой турбины. Картер содержит цилиндрический корпус (10), главное направление которого проходит вдоль продольной оси (X), и входной фланец (20), выполненный радиально относительно продольной оси (X) от входного конца корпуса (10). Картер...
Тип: Изобретение
Номер охранного документа: 0002662264
Дата охранного документа: 25.07.2018
02.08.2018
№218.016.7805

Лопатка спрямляющего аппарата газотурбинного двигателя

Изобретение относится к лопатке спрямляющего аппарата газотурбинного двигателя (1). Содержит множество сечений (35) лопатки, наслоенных вдоль радиальной оси Z. На нижнем участке лопатки от 0 до 50% общей высоты передняя кромка (BA) каждого сечения выступает вперед относительно передней кромки...
Тип: Изобретение
Номер охранного документа: 0002662761
Дата охранного документа: 30.07.2018
17.08.2018
№218.016.7bc1

Контроль авиационного двигателя, предваряющий операции технического обслуживания

Изобретение относится к способу и системе контроля авиационного двигателя. Получают временной сигнал остаточного запаса температуры отработавших газов авиационного двигателя, сглаживают временной сигнал для построения первой кривой, характеризующей остаточный запас температуры, идентифицируют...
Тип: Изобретение
Номер охранного документа: 0002664126
Дата охранного документа: 15.08.2018
Showing 1-1 of 1 item.
22.01.2019
№219.016.b286

Способ мониторинга деградации бортового устройства летательного аппарата, включающий в себя определение порога подсчета

Изобретение относится к способу мониторинга деградации бортового устройства летательного аппарата во время его работы. Для этого с помощью вычислительного устройства определяют степень деградации бортового устройства по показателю дефектности, который определяют подсчитыванием возникающих...
Тип: Изобретение
Номер охранного документа: 0002677757
Дата охранного документа: 21.01.2019
+ добавить свой РИД