×
10.05.2018
218.016.4179

Результат интеллектуальной деятельности: Способ предотвращения образования гидратов в газоводяной системе

Вид РИД

Изобретение

Аннотация: Изобретение относится к предотвращению гидратообразования в газоводяных системах и может быть использовано в нефтегазодобывающей и перерабатывающей промышленности. Предлагаемый способ предотвращения образования гидратов в газоводяной системе включает определение термобарических параметров системы, контакт с ней концентрированного реагента, расчет по соответствующей формуле температурного диапазона предотвращения образования гидратов, начиная от величины температуры на их равновесной линии, дополнительно определяют расходы воды и реагента, когда система находится в динамике, или их количества, когда система статична, а величину температурного диапазона рассчитывают по формуле. 2 з.п. ф-лы, 5 ил.

Изобретение относится к предотвращению гидратообразования в газоводяных системах и может быть использовано в нефтегазодобывающей и перерабатывающей промышленности.

Известен способ предотвращения гидратообразования, основанный на вводе химического реагента (ингибитора гидратообразования) в газоводяную систему, выводе реагента, разбавленного водой (в дальнейшем просто разбавленного реагента), причем необходимое количество вводимого реагента определяется расчетным методом в соответствии с непрерывно фиксируемыми параметрами газового потока (температурой, давлением, расходом газа) на входе и выходе (Тараненко Б.Ф. Автоматическое управление процессом ввода ингибитора гидратообразования. Тематический научно-технический обзор в серии "Автоматизация, телемеханизация и связь в газовой промышленности". М.: ВНИИЭГАЗпром, 1972, с. 1-54).

Общими признаками известного и предлагаемого способов являются:

- определение величин давления и температуры газоводяной системы;

- ввод в систему и контакт с ней концентрированного химического реагента.

К недостаткам известного способа необходимо отнести то, что расчетный метод определения расхода реагента основан на соотношениях материального баланса и предположениях о квазиравновесном и равномерном распределении реагента. В связи с этим в нем используются весьма приближенные данные по равновесной растворимости реагента (например, метанол или гликоли) в газовой фазе. Однако реальный процесс не является строго равновесным, газовая и жидкая фазы движутся с разными скоростями и т.п. Все это приводит в указанном аналоге к большим погрешностям, что обычно приводит к повышенным расходам реагента (зачастую дорогостоящего) и негативным последствиям: увеличению его потерь и повышенным затратам энергии на регенерацию, которые обуславливают повышенные эксплуатационные расходы.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ предотвращения гидратообразования при подготовке углеводородного газа к транспорту, включающий введение в газовый поток химического реагента (ингибитора гидратообразования), вывод отработанного реагента, разбавленного водой, и определение для регулирования расхода реагента разности (температурного диапазона) между температурой начала гидратообразования и температурой системы в месте вывода реагента (т.е. температурного диапазона предотвращения в ней образования гидратов), причем концентрацию реагента в отработанном водном растворе поддерживают исходя из соотношения (Патент РФ 2049957, МПК F17D 1/05. Способ предотвращения гидратообразования при подготовке углеводородного газа к транспорту):

где X - концентрация реагента в отработанном водном растворе, масс.

ΔT=Т0-Т;

Т0 - температура начала гидратообразования газа, определяемая по расновесной кривой гидратообразования в системе газ-вода, К;

Т - температура газового потока в месте вывода ингибитора, К;

- молекулярная масса воды;

МИНГ - молекулярная масса ингибитора;

А - эмпирический коэффициент, зависящий от типа ингибитора: метанола, этиленгликоля, диэтиленгликоля и триэтиленгликоля и находящийся от 65 до 90.

Общими признаками известного и предлагаемого способов являются:

- определение термобарических параметров (давления и температуры) газоводяной системы,

- ввод в систему и контакт с ней концентрированного химического реагента,

- расчет по соответствующей формуле величины температурного диапазона предотвращения в ней образования гидратов, начинающегося от равновесной температуры гидратообразования при давлении системы.

К недостаткам известного способа необходимо отнести расчет концентрации разбавленного реагента, который производится по формуле, которая пригодна для неопределенного диапазона ее величин (применяемый в ней знак >). Использование разбавленного раствора реагента в неопределенном диапазоне его концентрации предполагает применение метода экспертных оценок для уточнения ее величины, что обычно приводит к повышенным расходам реагента и ряду негативных последствий:

- повышенным затратам тепловой и электрической энергии на регенерацию реагента и/или утилизацию в специальных установках, что увеличивает эксплуатационные затраты;

- увеличению потерь зачастую дорогостоящих реагентов, что обуславливает необходимость их компенсации из специально оборудованных хранилищ, обслуживаемых и охраняемых персоналом, что увеличивает эксплуатационные затраты в целом.

Кроме этого к недостаткам необходимо отнести небольшую предлагаемую номенклатуру использования реагентов, только четыре типа спиртов. Для прочих эффективных химических реагентов (например, других спиртов, кислот, соединений азота, соединений кислорода, солей) расчетная формула неприемлема. Это снижает возможность выбора по эффективности и стоимости оптимальных типов химических реагентов на предотвращение гидратообразования, что, как следствие, повышает эксплуатационные затраты.

Задачей изобретения является совершенствование способа предотвращения образования гидратов.

Техническим результатом предлагаемого изобретения является повышение эффективности предотвращения образования гидратов путем уменьшения эксплуатационных затрат.

Технический результат достигается тем, что в способе предотвращения образования гидратов в газоводяной системе, включающем определение термобарических параметров системы, контакт с ней концентрированного реагента, расчет по соответствующей формуле температурного диапазона предотвращения образования гидратов, начиная от величины температуры на их равновесной линии, новым является то, что дополнительно определяют расходы воды и реагента, когда система находится в динамике, или их количества, когда система статична, а величину температурного диапазона рассчитывают по формуле:

ΔT - величина температурного диапазона, К;

Р - давление системы, МПа;

L - расход реагента (кг/с) или его количество (кг):

X - массовая доля концентрированного реагента;

Lw - расход (кг/с) воды или ее количество (кг);

K - коэффициент, учитывающий условия массообмена между взаимодействующими средами при контакте реагента с системой (при идеальном перемешивании и достаточном времени для полного диффузионного взаимопроникновения молекул реагента, газа и воды K=1, в других случаях K<1);

а, b, с - эмпирические коэффициенты для различных реагентов - спиртов, кислот, соединений азота, соединений кислорода, солей;

новым является еще и то, что численные значения эмпирических коэффициентов а, b, с определены для следующих типов реагентов:

спиртов:

- метанола: а=-138,93; b=-40,15; d=271,89;

- этанола: а=-10,40; b=-70,26; d=275,93;

- пропанола: а=28,83; b=-63,80; d=274,40;

- этиленгликоля: а=-160,62; b=11,44; d=270,20;

- диэтиленгликоля: а=-131,77; b=13,14; d=271,73;

- триэтиленгликоля: а=-101,47; b=7,41; d=272,16;

- пропиленгликоля: а=-153,29; b- 16,51; d- 269,72;

- глицерина: а=-116,58; b=14,74; d=270,78;

кислот:

- азотной кислоты: а=-332,73; b=-14,39; d=271,75;

- серной кислоты: а=-618,46; b=50,86; d=269,68;

- соляной кислоты: а=-1479,60; b=57,50; d=269,69;

- уксусной кислоты: а=-15,27; b=-31,92; d=273,29;

соединений азота:

- аммиака: а=-937,69; b=28,37; d=268,27;

- моноэтаноламина: а=-480,14; b=122,40; d=262,47;

- диэтаноламина: а=-153,57; b=30,64; d=269,65;

- триэтаноламина: а=-158,93; b=50,54; d=268,65;

соединений кислорода:

- гидрооксида калия: а=-670,91; b=25,91; d=270,26;

- гидрооксида натрия: a=-498,06; b=-46,32; d=272,43;

- пероксида водорода: а=-87,73; b=-65,31; d=274,14;

- формальдегида: а=-29,81; b=-57,01; d=273,12;

солей:

- хлорида лития: а=-1130,70; b=19,79; d=270,55;

- хлорида магния: а=-840,22; b=16,46; d=271,84;

- хлорида кальция: а=-840,90; b=126,63; d=263,66;

- хлорида натрия: а=-212,97; b=-45,24; d=272,86;

- перманганата кальция: а=-295,60; b=48,35; d=269,16;

- нитрата кальция: а=-102,86; b=-16,29; d=272,86;

- нитрит-нитрата кальция (1:1): а=-204,47; b=-6,58; d=271,94;

- нитрит-нитрат-хлорида кальция (1:1:2): a =-575,18; b=24,63; d=270,62.

Кроме того, новым является то, что при регулировании расхода (количества) реагента производят выбор его типа из вышеприведенной номенклатуры, концентрации и необходимой величины температурного диапазона предотвращения образования гидратов, рассчитываемой по вышеприведенной формуле.

Прием, заключающийся в том, что величину необходимого температурного диапазона предотвращения гидратообразования определяют по вышеприведенной формуле, позволяет определить диапазон термических условий, в которых не образуются гидраты, в зависимости от давления Р системы, наличия в ней воды Lw, концентрации X и расхода (количества) L вводимого реагента и его типа, который учитывается эмпирическими коэффициентами а, b, с, а также от условий массообмена при контакте между концентрированным реагентом и исходной газоводяной системой, учитываемых коэффициентом K. Таким образом, в формуле учтены все необходимые термобарические и гидродинамические параметры системы, основные параметры вводимого реагента. Поэтому с помощью этой формулы точно определяют температурные границы области, в которой гарантированно предотвращается образование гидратов. При этом точно определяют расход или количество применяемого реагента, что, как следствие, снижает эксплуатационные затраты на энергетические и капитальные расходы на его регенерацию, экономические расходы компенсацию потерь и пр.

Численные значения коэффициентов а, b, с определены для 28 типов антигидратных реагентов - спиртов, кислот, соединений азота, соединений кислорода и солей. Это повышает возможность выбора из этих типов химических реагентов для применения в конкретных условиях газоводяной системы оптимального реагента по эффективности и стоимости, что, как следствие, во-первых, повышает эффективность предотвращение гидратообразования и, во-вторых, снижает на это эксплуатационные затраты.

Технический прием, заключающийся в том, что при регулировании расхода (количества) реагента производят выбор его типа из приведенной выше номенклатуры, концентрации и необходимой величины температурного диапазона предотвращения образования гидратов, рассчитываемой по формуле, приводит к применению оптимального реагента (по типу, концентрации, расходу (количеству) для предотвращения гидратообразования. В конечном итоге это позволяет на практике работать в оптимуме использования реагентов. В конечном итоге этот прием позволяет точно применять реагенты для предотвращения гидратообразования и, как следствие, оптимизировать эксплуатационные и капитальные затраты.

Авторам не известны способы предотвращения образования гидратов подобным образом.

Практическая реализация предлагаемого способа предотвращения образования гидратов представлена примерами.

ПРИМЕР 1

Предотвращение образования гидратов в газоводяной системе с применением химических реагентов выполняют следующим образом. Определяют:

1) термобарические параметры системы (давление Р, МПа и температуру Т, К);

2) X - массовую долю концентрированного реагента;

3) расходы (кг/с) или количества (кг) воды Lw и реагента L;

4) условия массообмена между взаимодействующими средами при контакте реагента с системой, учитываемые коэффициентом K, величина которого в данном примере равняется единице, учитывающей равномерное распределение реагента в объеме системы;

5) величину температурного диапазона ΔT предотвращения образования гидратов по формуле:

На основе расчетов построены графические зависимости ΔT от соотношения при равномерном распределении реагента в объеме системы (K=1) в диапазоне давления системы от 1,0 до 10,0 МПа. Графические зависимости представлены для: спиртов на фиг. 1, кислот на фиг. 2, соединений азота на фиг. 3, соединений кислорода на фиг. 4, солей на фиг. 5. В выбранном диапазоне давлений расхождения в величинах ΔT составляет не более ± 0,5 град. При больших давлениях системы на каждые дополнительные 10,0 МПа ΔT увеличивается на 0,8 град.

При регулировании расхода (количества) реагента L производят выбор его типа, концентрации и необходимой величины температурного диапазона предотвращения образования гидратов, рассчитываемой по формуле или из графических зависимостей (Фиг. 1-5).

ПРИМЕР 2

В данном примере показывается предотвращение образования гидратов в газоводяной системе, в которой газовой фазой является природный газ сеноманской залежи Юрхаровского газоконденсатного месторождения, содержащий 98,6% об. метана. Термобарические параметры системы: давление Р=10,0 МПа, температура T=282 К. Суммарный расход водной фазы Lw=0,036 кг/с, в т.ч. в паровой фазе 0,004 кг/с, пластовой воды в жидкой фазе 0,032 кг/с.

Необходимо предотвратить образование гидратов согласно требованиям СТО Газпром 089-2010 при величинах температур до 253 К, т.е. обеспечить температурный диапазон предотвращения образования гидратов ΔT=35 К, начиная от величины температуры на их равновесной линии - 286 К и включая температурный «запас» 2 К.

В качестве реагента из номенклатуры по п. 2 формулы изобретения выбирают спирт - метанол. Массовая доля концентрированного метанола после установки регенерации X=0,97 масс.

По графику на фиг. 1 в зависимости от ΔT=35 К определяют величину Откуда рассчитывают необходимый расход метанола: L=0,022 кг/с. Таким образом, предотвращение образования гидратов гарантированно обеспечивается в диапазоне температур от 286 К на линии равновесия до 251 К.

ПРИМЕР 3

В данном примере показывается предотвращение образования гидратов в скважине в процессе кислотной обработки забоя для интенсификации добычи газа. Извлекаемый флюид содержит природный газ и пластовую воду.

Термобарические параметры в призабойной зоне скважины: давление Р=25,0 МПа, температура Т=295 К. На устье скважины давление Р=20,0 МПа и температура Т=286 К.

Суммарный расход водной фазы Lw=1,6 кг/с, в т.ч. в паровой фазе 0,006 кг/с, воды, поступающей из пласта в жидкой фазе 1,594 кг/с.

Для предотвращения образования гидратов в газоводяной системе из номенклатуры по п. 2 формулы изобретения выбирают соляную кислоту. Начальная концентрация соляной кислоты X=0,15 масс.

По графику на фиг. 2 в зависимости от ΔT=15+1,2 К определяют величину Откуда рассчитывают необходимый расход соляной кислоты: L=4,4 кг/с.

Таким образом, предотвращение образования гидратов гарантированно обеспечивается в диапазонах температур от 291-293 К на линии равновесия при давлениях 20,0-25,0 МПа до величины 276,8 К.

ПРИМЕР 4

В данном примере показывается предотвращение образования гидратов в газоводяной среде, транспортируемой на центральный пункт сбора по внутрипромысловому трубопроводу при давлении 8,0 МПа. Суммарный расход водной фазы Lw=0,05 кг/с, в т.ч. в паровой фазе 0,01 кг/с, пластовой воды в жидкой фазе 0,04 кг/с.

В зимний период времени температура транспортируемой среды может достигать 248-243 К.

Необходимо предупредить образование гидратов с температурным запасом в 5 К, т.е. обеспечить температурный диапазон предотвращения гидратообразования ΔT=45 К начиная от 283 К на линии равновесия до 238 К.

В качестве реагента из номенклатуры по п. 2 формулы изобретения выбирают соединение азота - аммиак. Массовая доля концентрированного аммиака после установки регенерации X=0,95 масс.

По графику на фиг. 3 в зависимости от ΔT=45 К определяют величину Откуда рассчитывают необходимый расход аммиака: L=0,015 кг/с. С таким расходом аммиака предотвращение образования гидратов гарантированно обеспечивается в диапазоне температур от 283 К на линии равновесия до 238 К.

ПРИМЕР 5

В данном примере показывается предотвращение образования гидратов в скважине в процессе щелочной обработки забоя для интенсификации добычи газа. Извлекаемый флюид содержит природный газ и пластовую воду.

Термобарические параметры в призабойной зоне скважины: давление Р-15,0 МПа, температура T=283 К. На устье скважины давление Р-10,0 МПа и температура Т=278 К.

Суммарный расход водной фазы Lw=1,0 кг/с, в т.ч. в паровой фазе 0,01 кг/с, воды, поступающей из пласта в жидкой фазе 0,99 кг/с.

Для предотвращения образования гидратов в газоводяной системе из номенклатуры по п. 2 формулы изобретения выбирают гидрооксид натрия. Начальная концентрация гидрооксида натрия X=0,12 масс.

По графику на фиг. 4 в зависимости от ΔT=10+0,4 К определяют величину Откуда рассчитывают необходимый расход гидрооксида натрия: L=5 кг/с.

Таким образом, предотвращение образования гидратов гарантированно обеспечивается в диапазонах температур от 285-289 К на линии равновесия при давлениях 10,0-15,0 МПа до величины 275,6 К.

ПРИМЕР 6

В данном примере показывается предотвращение образования гидратов в системе подачи газа потребителю под давлением 1,0 МПа в безгидратном состоянии после сжатия в жидкостно-струйном компрессорном агрегате, перекачивающем нефтяной газ от давления 0,15 МПа до 1,5 МПа. Подача газа потребителю осуществляется в климате Калининградской области при средней температуре в холодный период 258 К.

Суммарный расход поступающей вместе с газом воды составляет Lw=0,2 кг/с, в т.ч. в паровой фазе 0,05 кг/с, пластовой воды в жидкой фазе 0,15 кг/с.

Для предотвращения образования гидратов в газоводяной системе до температуры 248 К, взятую с запасом на минимальное значение температур в этом районе, выбирают из номенклатуры по п. 2 формулы изобретения водный раствор солей - хлорида кальция. Начальная концентрация в водном растворе, применяемом в жидкостно-струйном компрессорном агрегате, хлорида кальция X=0,30 масс.

При давлении 1,0 МПа температура нефтяного газа на равновесной линии гидратообразования 278 К.

По графику на фиг. 5 в зависимости от ΔT=30 К определяют величину Откуда рассчитывают необходимый расход хлорида кальция: L-1,0 кг/с. С таким расходом хлорида кальция предотвращение образования гидратов гарантированно обеспечивается в диапазоне температур от 278 К на линии равновесия до 248 К.


Способ предотвращения образования гидратов в газоводяной системе
Способ предотвращения образования гидратов в газоводяной системе
Способ предотвращения образования гидратов в газоводяной системе
Способ предотвращения образования гидратов в газоводяной системе
Способ предотвращения образования гидратов в газоводяной системе
Способ предотвращения образования гидратов в газоводяной системе
Источник поступления информации: Роспатент

Showing 71-80 of 471 items.
25.08.2017
№217.015.a558

N-алкилзамещенные бензо- и (пиридо[2,3-b]тиено)пирроло[1,2-a][1,4]диазепин-6-оны - антидоты гербицида гормонального действия 2,4-дихлорфеноксиуксусной кислоты на подсолнечнике

Изобретение относится к новым синтетическим, химическим биологически активным веществам из ряда гетероциклических соединений формулы 1 a
Тип: Изобретение
Номер охранного документа: 0002607629
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b52a

Способ получения наноструктурированных покрытий титан-никель-гафний с высокотемпературным эффектом памяти формы на стали

Изобретение относится к области металлургии, а именно к деформационно-термической обработке покрытий титан-никель-гафний с эффектом памяти формы, и может быть использовано в металлургии, машиностроении и медицине. Способ получения наноструктурированного покрытия титан-никель-гафний с...
Тип: Изобретение
Номер охранного документа: 0002614226
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b7d6

Устройство для вычисления тригонометрических функций

Изобретение относится к области вычислительной техники, в частности, к специализированным вычислителям. Технический результат заключается в снятии ограничений на аргумент вычисляемых функций в диапазоне от 0 до +∞. Технический результат достигается за счет устройства для вычисления...
Тип: Изобретение
Номер охранного документа: 0002614931
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7e2

Устройство для логарифмирования двоичных чисел

Изобретение относится к вычислительной технике и может быть использовано для вычисления значений логарифмической функции от двоичного аргумента. Технический результат заключается в обеспечении возможности получения результата логарифмирования двоичных чисел с меньшими погрешностями и повышении...
Тип: Изобретение
Номер охранного документа: 0002614932
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.bc80

Очки для защиты от ионизирующего излучения

Изобретение относится к медицине. Очки для защиты от ионизирующего излучения состоят из корпуса, выполненного в виде очковой обоймы, защитных стекол и средства крепления на голове. При этом очковая обойма состоит из двух окуляров, каждый из которых содержит защитное стекло, расположенное в...
Тип: Изобретение
Номер охранного документа: 0002616216
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.bdc2

Рекуператор транспортного средства, оснащенный маховиком и упругими элементами

Изобретение относится к машиностроению, а именно к рекуперации энергии торможения. Рекуператор содержит вал рекуператора, на котором жестко закреплено четырехлучевое водило и установлена с помощью подшипников центральная шестерня с возможностью поворота вокруг вала рекуператора. На концах...
Тип: Изобретение
Номер охранного документа: 0002616460
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.bdc6

Планетарный механизм преобразования вращательного движения в возвратно-вращательное

Изобретение относится к области машиностроения, а именно к преобразователям вращательного движения в возвратно-вращательное и наоборот. Планетарный механизм преобразования вращательного движения в возвратно-вращательное содержит корпус, в котором соосно установлены входной и выходной валы,...
Тип: Изобретение
Номер охранного документа: 0002616457
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.bdd6

Способ переработки безлузгового ядра подсолнечника

Изобретение относится к пищевой промышленности, а именно к способам подготовки растительного сырья, и может быть использовано в производстве растительного масла. Способ переработки безлузгового ядра подсолнечника включает насыщение безлузгового ядра подсолнечника этанолом концентрацией 99,8%, в...
Тип: Изобретение
Номер охранного документа: 0002616821
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bde8

Мармелад профилактического назначения

Изобретение относится к пищевой промышленности, а именно к композициям для производства мармелада. Мармелад профилактического действия включает патоку, сахар, абрикосовую камедь, экстракт гинкго (лат. Ginkgo ), сироп сорбитовый, а также смесь янтарной и лимонной кислот в соотношении 1:2....
Тип: Изобретение
Номер охранного документа: 0002616786
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bdf1

Пищевая композиция для производства вафель

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий, таких как вафли. Пищевая композиция включает мучную смесь, содержащую пшеничную муку и муку из семян тыквы, взятые в соотношении 4:1, желтки, бикарбонат натрия, фосфатиды, соль и воду,...
Тип: Изобретение
Номер охранного документа: 0002616782
Дата охранного документа: 18.04.2017
Showing 21-27 of 27 items.
06.07.2019
№219.017.a837

Сепаратор для отделения жидкости из газового потока

Изобретение предназначено для сепарации жидкости из газового потока. Сепаратор включает цилиндрический корпус с вихревым устройством на входе, каплесъемником на выходе и телом вращения - вытеснителем между ними и каналы отбора жидкости. Вихревое устройство выполнено из осевого завихрителя и...
Тип: Изобретение
Номер охранного документа: 0002359737
Дата охранного документа: 27.06.2009
06.07.2019
№219.017.a83a

Газодинамический сепаратор

Изобретение относится к оборудованию для низкотемпературной обработки газов, например многокомпонентных природных и нефтяных углеводородных газов, может быть использовано для низкотемпературной подготовки, переработки, осушки, отбензинивания многокомпонентных углеводородных газов. Сепаратор...
Тип: Изобретение
Номер охранного документа: 0002353422
Дата охранного документа: 27.04.2009
06.07.2019
№219.017.a840

Способ газодинамической сепарации

Способ газодинамической сепарации относится к технике низкотемпературной обработки многокомпонентных углеводородных газов (природных и нефтяных), а именно для осушки газа путем конденсации из него водного и (или) углеводородных компонентов, и может быть использован в системах сбора, подготовки...
Тип: Изобретение
Номер охранного документа: 0002352878
Дата охранного документа: 20.04.2009
13.07.2019
№219.017.b341

Способ определения равновесных термобарических условий образования и диссоциации газовых гидратов

Изобретение относится к способам определения равновесных термобарических условий образования и диссоциации газовых гидратов, нахождение которых является важным при предотвращении образования и ликвидации техногенных гидратов, а также добычи газа на месторождениях природных гидратов....
Тип: Изобретение
Номер охранного документа: 0002694272
Дата охранного документа: 11.07.2019
13.12.2019
№219.017.eccf

Способ депрессионной добычи газа из гидратов

Изобретение относится к депрессионным методам добычи газа из гидратов и может быть применено при разработке природных гидратных месторождений на суше и в море. Техническим результатом является интенсификация добычи газа. Способ депрессионной добычи газа из гидратов, включает снижение давления,...
Тип: Изобретение
Номер охранного документа: 0002708771
Дата охранного документа: 11.12.2019
12.04.2023
№223.018.4367

Шарнир равных угловых скоростей

Изобретение относится к области машиностроения. Шарнир равных угловых скоростей содержит внешнюю и внутреннюю части шарнира, внутренняя часть шарнира представляет собой два стержня, сообщенных между собой посредством шарнирного соединения с выполненным на торце первого стержня сферическим...
Тип: Изобретение
Номер охранного документа: 0002793483
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4966

Способ подготовки углеводородного газа

Изобретение относится к способам очистки добываемого углеводородного газа путем удаления из него водного компонента и может быть использовано при подготовке газа к транспорту. Способ подготовки углеводородного газа включает ввод жидкого ингибитора гидратообразования в поток подготавливаемого...
Тип: Изобретение
Номер охранного документа: 0002738791
Дата охранного документа: 16.12.2020
+ добавить свой РИД