×
10.05.2018
218.016.40d6

Результат интеллектуальной деятельности: Способ получения изделия из гранулируемого жаропрочного никелевого сплава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению изделий из гранулируемого жаропрочного никелевого сплава, и может быть использовано для изготовления дисков газотурбинных двигателей, работающих при температурах до 800°С и выше. Способ получения изделия из гранулируемого жаропрочного никелевого сплава включает получение гранул, засыпку гранул в капсулу, горячее изостатическое прессование с получением заготовки, горячую деформацию за две или более операций. Перед горячей деформацией проводят гомогенизирующий отжиг заготовки, при котором заготовку нагревают до температуры на 300-700°С ниже температуры полного растворения γ'-фазы, выдерживают, затем заготовку нагревают со скоростью 50-70°С/ч до температуры на 5-10°С выше температуры полного растворения γ'-фазы, выдерживают, охлаждают до температуры на 50-100°С ниже температуры полного растворения γ'-фазы и выдерживают с дальнейшим охлаждением на воздухе. Горячую деформацию проводят с нагревом заготовки до температуры на 40-120°С ниже температуры полного растворения γ'-фазы. Обеспечивается равномерная мелкозернистая структура, повышение коэффициента использования металла. 3 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к области металлургии, а именно к способам получения изделий, в частности дисков газотурбинных двигателей (ГТД), работающих при температурах до 800°С и выше, из гранул жаропрочных сплавов на никелевой основе.

Известен способ изготовления изделий из жаропрочных никелевых сплавов, включающий получение гранул, их горячее изостатическое прессование (ГИП), деформацию и термическую обработку полученной заготовки (Согришин Ю.П. и др. Металлургия гранул. Сборник статей, 1986 г., стр. 113-120).

Недостатком данного способа являются недостаточно высокие механические свойства при комнатной и рабочей температурах, что обусловлено формированием крупнозернистой структуры сплава.

Известен способ изготовления дисков газотурбинных двигателей из порошковых жаропрочных сплавов на основе никеля (типа Rene 95) методом деформации. Жаропрочные гранулируемые сплавы штампуют при температуре 1010-1066°С, при этом штамповый инструмент, изготовленный из суперсплава, нагревают до температуры от 816 до 954°С. Штамповку осуществляют на воздухе при номинальной скорости деформации приблизительно 0,02 в секунду (US 6932877 В2, 23.08.2005).

Недостатком способа является низкая технологическая пластичность металла после компактирования горячим изостатическим прессованием, обусловленная наличием микропористости, слабыми межгранульными связями, а также выделением в процессе деформации мелкодисперсных частиц γ'-фазы на границах зерен.

Известен способ получения заготовки из суперсплава на основе никеля, включающий получение слитка с мелкозернистой структурой посредством вакуумной индукционной выплавки с последующим вакуумным дуговым переплавом, термообработку слитка с получением неэвтектической гамма-первичной микроструктуры, экструдирование термообработанного слитка с целью уменьшения площади поперечного сечения для получения полностью рекристаллизованной мелкозернистой структуры, ГИП экструдированного материала для закрытия всех пустот и пористости при температуре, достаточно низкой для предотвращения значительного роста зерна, и ковку (ЕР 0248757 В1, 07.03.1990).

Недостатками данного способа являются необходимость применения крупногабаритного и энергоемкого оборудования для выплавки слитков большого диаметра и их деформации. При производстве дисков большого размера использование предварительно прессованной заготовки затруднено в связи с ее малым диаметром по отношению к размерам и массе окончательного изделия, что приводит к необходимости применения дополнительных операций подпрессовки.

Известен способ изготовления дисков из высоколегированных жаропрочных никелевых сплавов, который включает вакуумно-индукционную выплавку, получение слитка диаметром 320 мм под деформацию вакуумным дуговым переплавом, гомогенизирующий отжиг слитка при температуре на 20÷30°С выше полного растворения γ'-фазы (Тпр γ') в течение 4÷8 часов, с охлаждением с печью до температуры максимальной коагуляции γ'-фазы и далее на воздухе, предварительную деформацию слитка прессованием на пруток со степенью 65÷75% при температуре на 40÷60°С ниже Тпр γ' с последующей подпрессовкой мерных заготовок в закрытом контейнере со степенью 35-50% при температуре на 60÷80°С ниже Тпр γ', окончательную деформацию с совмещением операции осадки и штамповки при температуре на 40÷60°С ниже Тпр γ' со степенью 75÷85%, термическую обработку, состоящую из предварительного отжига при температуре на 100÷130°С ниже Тпр γ', обработки на твердый раствор при температуре Тпр γ'±10°С с регламентированным охлаждением и последующим старением (SU 1637360 А1, 15.11.1994).

Недостатками известного способа являются невозможность обеспечения требуемой однородности и высокого уровня свойств изделия, низкий коэффициент использования металла и высокая трудоемкость получения изделий.

Наиболее близким аналогом является способ изготовления дисков газотурбинных двигателей из порошковых жаропрочных сплавов на основе никеля, включающий получение гранул, их размещение в капсулах, горячее изостатическое прессование, деформацию, закалку и старение. Полученные гранулы рассеивают на гранулы размером 10-50 мкм, горячее изостатическое прессование проводят при температуре на 10-30°С ниже температуры полного растворения γ'-фазы с выдержкой под давлением в течение 2-8 ч, деформацию осуществляют объемной штамповкой или прессованием вытяжкой со степенью деформации 70-90% при температуре на 60-100°С ниже температуры полного растворения γ'-фазы с последующей закалкой от температуры деформации со скоростью 50-100°С/мин (RU 2433205 С1, 10.11.2011).

Недостатком способа-прототипа является необходимость применения крупногабаритного и энергоемкого оборудования для деформации заготовок при прессовании из-за низкой технологической пластичности заготовок после ГИП, а также недостаточно равномерная структура получаемого изделия.

Техническим результатом предложенного изобретения является обеспечение равномерной мелкозернистой структуры (размер зерна менее 10 мкм) изделия из гранулируемого жаропрочного никелевого сплава, повышение коэффициента использования металла (КИМ).

Для достижения технического результата предложен способ получения изделия из гранулируемого жаропрочного никелевого сплава, включающий получение гранул, засыпку гранул в капсулу, горячее изостатическое прессование с получением заготовки, горячую деформацию за две или более операций, при этом перед горячей деформацией проводят гомогенизирующий отжиг заготовки, при котором заготовку нагревают до температуры на 300-700°С ниже температуры полного растворения γ'-фазы, выдерживают при этой температуре не менее 1 часа, затем заготовку нагревают со скоростью 50-70°С/ч до температуры на 5-10°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре не менее 8 часов, охлаждают ее со скоростью 10-15°С/ч до температуры на 50-100°С ниже температуры полного растворения γ'-фазы и выдерживают при этой температуре не менее 8 часов с дальнейшим охлаждением на воздухе, а горячую деформацию проводят с нагревом заготовки до температуры на 40-120°С ниже температуры полного растворения γ'-фазы.

Капсулу можно удалить с заготовки перед гомогенизирующим отжигом или после первой операции горячей деформации.

Между операциями горячей деформации заготовки рекомендуется провести промежуточные отжиги при температуре на 20-80°С ниже температуры полного растворения γ'-фазы в течение 4-10 часов с последующим охлаждением с печью до температуры 400-700°С и дальнейшим охлаждением на воздухе.

Горячую деформацию заготовки лучше проводить в штампе, температура которого равна температуре нагрева заготовки или ниже температуры нагрева заготовки на 10-250°С.

Предложенный способ осуществляется следующим образом.

Полученные методом центробежного распыления либо газовой атомизацией расплава гранулы засыпают в капсулу в вакууме или в среде инертных газов, после чего капсула запечатывается, дегазируется, герметизируется и подвергается горячему изостатическому прессованию (ГИП) по режиму, зависящему от выбранной марки жаропрочного никелевого сплава, в результате чего гранулы внутри капсулы спекаются до расчетной плотности.

Далее полученную заготовку подвергают гомогенизирующему отжигу, обеспечивающему повышение технологической пластичности, по следующему режиму: нагрев до температуры на 300-700°С ниже температуры полного растворения γ'-фазы, выдержка при этой температуре не менее 1 часа, нагрев со скоростью 50-70°С/ч до температуры на 5-10°С выше температуры полного растворения γ'-фазы, выдержка при этой температуре не менее 8 часов и ее охлаждение со скоростью 10-15°С/ч до температуры на 50-100°С ниже температуры полного растворения γ'-фазы. Вышеуказанные режимы гомогенизирующего отжига позволяют при дальнейшей пластической деформации заготовок получить равномерную по сечению штамповки мелкозернистую структуру с размером зерен не более 10 мкм, а также за счет снижения количества деформационных трещин получить большее количество годных деталей, таким образом повышая КИМ.

Далее заготовка подвергается горячей деформации за две или более операций (переходов) в зависимости от конечной толщины штамповки. Заготовку при этом нагревают на 40-120°С ниже температуры полного растворения γ'-фазы. Приведенные температуры нагрева заготовок под деформацию позволяют сформировать в деформированных заготовках равномерную структуру материала с размером зерен менее 10 мкм за счет протекания процессов динамической рекристаллизации.

Для повышения технологической пластичности, а также формирования равномерной структуры штамповки с размером зерен менее 10 мкм между операциями деформации желательно проводить промежуточные отжиги заготовки при температуре на 20-80°С ниже температуры полного растворения γ'-фазы в течение 4-10 часов с последующим замедленным охлаждением с печью до температуры 400-700°С и дальнейшим охлаждением на воздухе. Длительная выдержка при температуре на 10-50°С ниже температуры полного растворения γ'-фазы с последующим замедленным охлаждением позволяет коагулировать выделения γ'-фазы, что повышает технологическую пластичность материала и таким образом позволяет дополнительно увеличить КИМ.

Для снижения усилий деформации, повышения КИМ за счет приближения формы изделия (штампованной заготовки) к форме детали, а также получения равномерной структуры штамповки за счет более равномерного температурного поля заготовки деформацию (штамповку) необходимо проводить с помощью штампа, нагретого до температуры, сопоставимой с температурой нагрева заготовки под деформацию.

Температура нагрева штампа выбирается в зависимости от рабочей температуры материала штампов и может быть равна температуре нагрева заготовки - тогда деформация будет проходить в изотермических условиях, либо до температуры на 10-250°С ниже температуры нагрева заготовки в квазиизотермических условиях в зависимости от рабочей температуры штампового материала, например, жаропрочного литейного никелевого сплава.

В зависимости от количества операций деформации, размеров заготовки и конечного изделия капсулу можно удалить с заготовки перед гомогенизирующим отжигом либо после первой стадии деформации. Проведение первой стадии деформации заготовки в капсуле позволит получить более равномерную структуру штампованной заготовки и повысить КИМ за счет значительного уменьшения размера застойных зон.

Примеры осуществления

Предложенным способом было получено три изделия (штампованных заготовок деталей типа «диск») из жаропрочного гранулируемого никелевого сплава ВЖ188 (температура полного растворения γ'-фазы (Тпрγ') - 1200°С). Способом-прототипом было получено одно изделие из сплава ЭП741НП (температура полного растворения γ'-фазы (Тпрγ') - 1180°С).

Получение гранул размером ≤100 мкм из гранулируемого жаропрочного никелевого сплава проводилось операцией центробежного распыления (для примеров 1, 2, 4) либо газовой атомизацией расплава (для примера 3). Полученные гранулы подвергались сепарации для получения необходимого гранулометрического состава (размер гранул менее 100 мкм).

Полученные гранулы поместили в стальную капсулу. Заполнение гранулами происходило в вакууме или в среде инертных газов, после чего капсулу запечатывали. Затем ее помещали в газостат и подвергали горячему изостатическому прессованию (ГИП) по следующим режимам:

- для сплава ВЖ188 (примеры 1-3) ГИП проводилось в двухфазной области при температуре 1180°С (Тпрγ'-20°С) с различным временем выдержки под рабочим давлением 150 МПа - 10, 8 и 6 часов соответственно;

- для сплава ЭП741НП (пример 4) ГИП также проводилось в двухфазной области при температуре 1170°С (Тпрγ'-10°С), время выдержки под рабочим давлением 200 МПа составило 2 часа.

После извлечения капсул из газостата в примерах 2 и 4 с их поверхности путем механической (токарной) обработки были полностью удалены капсулы.

Полученные заготовки (с капсулой для примеров 1, 3 и без нее для примера 2) подвергали гомогенизирующему отжигу по различным режимам. Заготовку из сплава ЭП741НП (пример 4) гомогенизирующему отжигу не подвергали. Далее проводили деформацию заготовок на прессе. Для примеров 2, 3 между операциями деформации проводили промежуточные отжиги с последующим замедленным охлаждением с печью и с дальнейшим охлаждением на воздухе.

Для реализации всех примеров использовали штампы из жаропрочного литейного никелевого сплава марки ЖС6У. Штампы нагревали до температуры 950°С.

Для примеров 1 и 3 капсулу удаляли с компактированной заготовки после первой стадии деформации.

Методом металлографического анализа определяли размер зерна в теле готовых штамповок.

Технологические параметры процесса получения изделий из гранулируемого жаропрочного никелевого сплава, КИМ и размеры зерна в теле штамповки приведены в таблице.

Исходя из представленных данных видно, что, в отличие от способа-прототипа, предложенный способ обеспечивает получение равномерной мелкозернистой структуры изделия из гранулируемого жаропрочного никелевого сплава с размером зерна не более 10 мкм, а также повышение коэффициента использования металла (КИМ) за счет выбранных режимов гомогенизирующего отжига и деформации.

Проведение промежуточных отжигов между операциями деформации (примеры 2, 3) позволяет дополнительно уменьшить размер зерна в теле штамповки и повысить КИМ.

Источник поступления информации: Роспатент

Showing 271-280 of 354 items.
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
Showing 271-280 of 326 items.
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
+ добавить свой РИД