×
10.05.2018
218.016.3ee8

Результат интеллектуальной деятельности: Способ оценки напряженного состояния горных пород

Вид РИД

Изобретение

№ охранного документа
0002648401
Дата охранного документа
26.03.2018
Аннотация: Изобретение относится к горному делу и может быть использовано для оценки напряженного состояния горных пород в породном массиве. Технический результат заключается в повышении эффективности способа оценки напряженного состояния горных пород за счет увеличения локального напряжения в горной породе до предела ее прочности и оценки значений фактически действующих в ней напряжений. Способ включает прием от трещин электромагнитных и упругих волн, оценку напряженного состояния горных пород. Трещины создают направленными возрастающими ударными нагрузками на горную породу и фиксируют их появление по частотному спектру электромагнитных и упругих волн. Напряженное состояние горной породы оценивают по значению удельного усилия той из указанных нагрузок, при которой напряжение в горной породе достигает предела ее прочности. 5 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть использовано для оценки напряженного состояния горных пород в породном массиве.

Известен способ определения напряженного состояния горных пород по патенту РФ №2398964, кл. Е21С 39/00, опубл. в БИ №25, 2010 г., включающий задание требуемой детальности исследования массива, установку датчиков электромагнитных и сейсмоакустических сигналов, регистрацию электромагнитных и сейсмоакустических сигналов, излучаемых естественными источниками в массиве горных пород, определение параметров этих сигналов. Регистрацию электромагнитных и сейсмоакустических сигналов производят датчиками в скважинах, пробуренных от поверхности обнажения вглубь массива, шаг измерения вдоль оси которых выбирают в соответствии с требуемой детальностью. Задают ширину скользящего пространственного окна, охватывающего несколько последовательно расположенных точек измерения. Для множества пар значений параметров электромагнитных и сейсмоакустических сигналов, соответствующих одним и тем же точкам внутри пространственного окна, определяют коэффициент корреляции. Ставят его значение в соответствие средней точке пространственного окна и в случае положительного значения коэффициента корреляции напряженное состояние массива горных пород в этой точке относят к допредельной стадии, а в случае отрицательного значения относят к запредельной стадии деформирования. Ширину пространственного окна выбирают из условия статистической значимости коэффициента корреляции.

Общим у аналога с предлагаемым способом является прием электромагнитных и упругих волн, излучаемых источниками в массиве горных пород, регистрацию указанных волн и определение их параметров.

В этом способе не предусмотрена возможность оценки разницы значений фактически действующих напряжений в горной породе и ее прочности. Поэтому его использование для оценки напряженного состояния горных пород, например, с целью прогноза устойчивости породного массива при изменении в нем напряжений, обусловленных техногенным на него воздействием, неэффективно.

Наиболее близким по технической сущности и совокупности существенных признаков является способ оценки напряженного состояния горных пород по патенту РФ №2485313, кл. Е21С 39/00, опубл. 20.06.2013 г., включающий бурение скважины, формирование щели разрывом горной породы пластичным веществом в заданной плоскости. Первоначально щель формируют пластичным веществом, электрическое сопротивление которого зависит от давления, а затем в щель из места, равноудаленного от ее границ, нагнетают пластичное вещество с диэлектрическими свойствами, создавая из первоначально нагнетаемого пластичного вещества кольцо, которое используют для приема электромагнитных и упругих волн от образования в горных породах трещин. Оценку напряженного состояния горных пород осуществляют по параметрам принимаемых волн.

Общим у прототипа с предлагаемым способом является прием от трещин электромагнитных и упругих волн, оценка напряженного состояния горных пород по параметрам принимаемых волн.

В этом способе трещины не создают направленными возрастающими ударными нагрузками на горную породу и не оценивают по энергии и временным функциям ударных импульсов величины дополнительных напряжений, которые способен выдержать породный массив. Способ не обеспечивает возможность наблюдения за приближением напряжений, обусловленных совокупностью природных и техногенных факторов, к пределу прочности горной породы. Поэтому он обладает относительно низкой эффективностью для оценки напряженного состояния горных пород.

Решаемая техническая проблема заключается в повышении эффективности способа за счет увеличения локального напряжения в горной породе до предела ее прочности и оценки значений фактически действующих в ней напряжений.

Проблема решается тем, что в способе оценки напряженного состояния горных пород, включающем прием от трещин электромагнитных и упругих волн, оценку напряженного состояния горных пород, согласно предлагаемому техническому решению трещины создают направленными возрастающими ударными нагрузками на горную породу и фиксируют их появление по частотному спектру электромагнитных и упругих волн, а напряженное состояние горной породы оценивают по значению удельного усилия той из указанных нагрузок, при которой напряжение в горной породе достигает предела ее прочности.

Такое техническое решение обеспечивает возможность наблюдения за приближением напряжений, обусловленных совокупностью природных и техногенных факторов, к пределу прочности горной породы, что позволяет выявлять опасные участки ведения горных работ и оперативно принимать меры по существенному снижению вероятности внезапных динамических проявлений породных массивов.

Предлагаемый способ реализует следующую идею. Хрупкая горная порода при достижении в ней напряжений предела ее прочности теряет устойчивость, от чего в породном массиве возможно проявление динамических процессов в виде внезапных горных ударов, обрушений выработок, образования завалов с тяжелыми негативными последствиями. Однако если напряжения в горной породе достигают предела ее прочности в небольшом объеме и кратковременно, то из-за сравнительно малой накопленной в ней упругой энергии масштабного динамического процесса разрушения породного массива не происходит. Вместе с этим по характерным признакам начала разрушения горной породы, например возникновению в ней микротрещин, можно оценивать ее состояние, а именно определять дополнительные напряжения, которые она способна выдержать. Для создания дополнительных кратковременных напряжений, которые в сумме с естественными напряжениями достигают предела прочности горной породы в малом объеме можно использовать ударные нагрузки, а начало ее разрушения определять по возникающим в ней микротрещинам. Особо следует отметить, что прочность горной породы существенно зависит от способа воздействия на нее. При динамической (ударной) нагрузке ее прочность в сравнении со статической нагрузкой может возрастать в несколько раз. Поэтому предлагаемый способ предусматривает знание известных или предварительно определяемых зависимостей прочностных характеристик конкретных горных пород от режима механического воздействия на нее. Определение прочности горной породы при статической нагрузке по параметрам ее разрушения комбинированной нагрузкой (статической и ударной) осуществляют по известным методикам.

Создание трещины направленными возрастающими ударными нагрузками на горную породу обеспечивает увеличение в ней напряжений до предела ее прочности. Фиксация появления трещин по частотному спектру электромагнитных и упругих волн позволяет использовать известные способы и средства для определения начала потери устойчивости горной породы (достижения напряжений в горной породе предела ее прочности). Оценка напряженного состояния горной породы по значению удельного усилия той из указанных нагрузок, при которой напряжение в горной породе достигает предела ее прочности, позволяет по известным методикам определять разность значений естественных напряжений в горной породе и ее прочности, т.е. оценивать дополнительное напряжение, которое способна выдержать горная порода. В результате, повышается эффективность способа за счет увеличения локального напряжения в горной породе до предела ее прочности и оценки значений фактически действующих в ней напряжений.

Целесообразно направленные возрастающие ударные нагрузки на горную породу создавать сбрасыванием груза в нисходящую вертикальную скважину. Это позволяет: тестировать горную породу в месте, до которого можно пробурить нисходящую скважину; использовать скважину в качестве направляющей перемещения груза; задавать требуемую энергию удара; воздействовать на горную породу наиболее простыми средствами и способом. Все это обуславливает повышение эффективности способа.

Целесообразно нисходящую скважину возле ее забоя предварительно заполнить пластичным веществом. Это исключает отскок груза после его падения, что существенно облегчает расчет удельного усилия, с которым он воздействует на породный массив, и позволяет по известным методикам, используемым в измерительных гидравлических разрывах, определять действующие напряжения в плоскости забоя скважины. В результате повышается эффективность способа.

Целесообразно временные функции ударных нагрузок определять по параметрам исходящих от них упругих волн. За счет этого прием упругих волн от ударных нагрузок и трещин, возникающих при разрушении горной породы, можно осуществлять одной и той же системой, что снижает стоимость реализации способа, повышая, тем самым, эффективность его использования.

Целесообразно дополнительно определять изменение во времени значения удельного усилия той из указанных нагрузок, при которой напряжение в горной породе достигает предела ее прочности. Это позволяет прогнозировать устойчивость породных массивов, что расширяет возможности способа.

Целесообразно для приема от трещин упругих и электромагнитных волн использовать скважину с поданным в нее электропроводящим веществом, электрическое сопротивление которого зависит от давления в нем. Это повышает достоверность измерительной информации за счет нейтрализации горного давления, дезинтегрирующего горную породу в окрестности скважины с образованием расслоений, экранирующих и искажающих принимаемые волны. При этом не требуется использования раздельных систем приема упругих и электромагнитных волн. В результате возрастает эффективность способа.

Сущность технического решения поясняется примером конкретной реализации способа оценки напряженного состояния горных пород и чертежом.

На чертеже показана схема реализации способа оценки напряженного состояния горных пород (далее - способ): слева - создание трещин в горной породе направленными возрастающими нагрузками на нее; справа - прием от трещин упругих и электромагнитных волн.

Способ реализуют следующим образом.

Направленными возрастающими ударными нагрузками на горную породу создают в ней трещины. Для этого сбрасывают груз 1 (см. чертеж) в нисходящую вертикальную скважину 2 (далее - скважина 2). От трещин принимают электромагнитные и упругие волны с помощью скважины 3 с поданным в нее электропроводящим веществом 4 (далее - вещество 4), электрическое сопротивление которого зависит от давления в нем. Появление трещин фиксируют по частотному спектру электромагнитных и упругих волн. Высоту сбрасывания груза 1 увеличивают до начала фиксации появления трещин, обуславливающих достижение напряжений в горной породе предела ее прочности. С использованием известных методик определяют временные функции направленных возрастающих ударных нагрузок по параметрам исходящих от них упругих волн. По высоте подъема груза 1 и временным функциям ударных нагрузок с использованием известных методик и формул механики движения физических тел определяют удельные усилия, с которыми груз 1 дополнительно к естественным напряжениям воздействует на горную породу. Определяют значение удельного усилия той из указанных нагрузок, при которой начинают появляться трещины, обусловленные достижением напряжения в горной породе предела ее прочности. Далее по известной методике перехода от комбинированной нагрузки к эквивалентной статической нагрузке определяют напряженное состояние горной породы. К грузу 1 для его подъема и сбрасывания в скважину 2 можно прикреплять трос 5. Для исключения отскока груза 1 после его падения скважину 2 возле ее забоя можно предварительно заполнить пластичным веществом 6 (далее -вещество 6). В вещество 4 для получения информации о характере воздействия на него упругих и электромагнитных волн можно вводить электроды 7 и 8, подсоединенные через проводники 9 и 10 соответственно к системе регистрации (на чертеже не показана). Дополнительно можно определять изменение во времени значения удельного усилия той из указанных нагрузок, при которой напряжение в горной породе достигает предела ее прочности (начинают появляться трещины).

Сбрасываемый в скважину 2 груз 1 в конце своего падения приобретает скорость

где ν - скорость груза в конце падения;

g - ускорение свободно падающего тела;

Н- высота, с которой сбрасывают груз 1.

При соударении с препятствием (забоем скважины или веществом 6) скорость груза 1 падает до нуля. Для условия заполнения скважины 2 веществом 6 отскока груза 1 не происходит и поэтому практически вся его кинетическая энергия затрачивается на создание давления Р в веществе 6, что можно оценить формулой

где Р - давление в веществе 6 в момент воздействия на него грузом 1;

m - масса груза 1;

- площадь поперечного сечения груза 1;

Δt - время, за которое приобретенная при падении груза 1 скорость становится нулевой в результате его внедрения в вещество 6.

Отметим, что формула (2) получена преобразованием известных в механике формул для ускоренного движения физического тела и для условия принятия постоянным ускорения груза 1 во время Δt его торможения при внедрении в вещество 6. Время Δt можно определять с помощью датчика (например, акселерометра), установленного непосредственно на падающем грузе 1, что связано с известными неудобствами. Поэтому время Δt определяют по параметрам исходящих от груза 1 упругих волн как время возрастания сигнала между его нулевым и первым максимальным значением.

Вещество 6 при кратковременном на него воздействии проявляет свойство твердого тела, направленно передающего усилие торможения груза 1 забою скважины 2, создавая тем самым нормальные к поверхности горной породы напряжения, численно равные давлению Р. Благодаря веществу 6 устраняется непосредственный контакт груза 1 с неровностями поверхности забоя, на которых при контакте с твердым телом концентрируются напряжения, способные инициировать возникновение непредусмотренных в способе микротрещин, снижающих достоверность информации о напряженном состоянии горной породы.

В большинстве случаев напряжения в породном массиве обусловлены весом вышележащих горных пород, и одно из главных напряжений, обладающее, как правило, наибольшим значением, направлено вертикально. С этим главным напряжением и суммируется напряжение, создаваемое падающим грузом 1 в скважине 2. Вместе с этим способ предусматривает создание дополнительных напряжений в горной породе ударными нагрузками на забой скважины с любой ориентацией. Для этого предполагается использовать известные погружные ударные машины (пневматические, электрические, гидравлические), создающие одиночные удары в широком диапазоне энергии ударных импульсов. Кроме этого, способ не исключает возможность создания дополнительных направленных напряжений в горной породе направленными возрастающими ударными нагрузками непосредственно по поверхности горной выработки.

Прием электромагнитных и упругих волн от трещин, возникающих в породном массиве как следствие разрушения горной породы, можно осуществлять предназначенными для таких целей любыми известными средствами. Вместе с этим следует учитывать, что при высоких напряжениях горная порода отжимается в сторону свободного пространства (выработки, скважины) с образованием расслоений, которые, являясь экранами, искажают принимаемую информацию. В предлагаемом способе заполнением веществом 6 свободного пространства скважины 2 исключают отжим горной породы (нет места для отжима) и, следовательно, ее расслоение. В качестве вещества 6 предполагается использовать сравнительно дешевые смеси, например графитового порошка и малого объема связующего его компонента, например эпоксидной смолы. В смеси до ее отвердения можно поддерживать давление, компенсирующее горное давление, из-за чего скважина 2 оказывает наименьшее влияние на состояние горной породы. Упругие и электромагнитные волны проходят непосредственно через вещество 4. Поэтому такая система приема волн обладает высокой чувствительностью.

Предлагаемый способ позволяет получать достоверную информацию о дополнительных нагрузках, которые породный массив способен гарантированно выдержать без внезапных динамических проявлений.


Способ оценки напряженного состояния горных пород
Источник поступления информации: Роспатент

Showing 41-50 of 79 items.
13.01.2017
№217.015.8931

Способ щелеобразования в скважинах и шпурах и щелеобразователь для его осуществления

Изобретения относятся к горному делу, а именно к бурению горных пород, и могут быть использованы для бурения скважин или шпуров (далее - скважин) путем нарезания инициирующей щели в горном массиве для последующего проведения гидроразрыва с целью его разупрочнения или дегазации. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002602634
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9973

Компрессионно-вакуумная ударная машина (варианты)

Изобретение относится к компрессионно-вакуумной ударной машине. Ударная машина содержит корпус, ударник, образующий с корпусом камеры прямого и обратного хода, и источник рабочей среды, электрически соединенный с первым входом блока управления. С камерой обратного хода связан электроклапан,...
Тип: Изобретение
Номер охранного документа: 0002609765
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.b0dc

Способ гидроразрыва прочных горных пород и комбинированное устройство для бурения и гидроразрыва прочных горных пород

Изобретения относятся к горному делу - к разупрочнению прочных горных пород методом направленного гидроразрыва, используется для управления горным давлением или дегазации. Способ включает бурение скважины, последующее нарезание инициирующей щели на ее боковой поверхности, герметизацию области...
Тип: Изобретение
Номер охранного документа: 0002613394
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.c796

Устройство для отработки откосов уступов

Изобретение относится к горной промышленности - к горным машинам с исполнительным органом ударного действия, используется для непрерывного послойного разрушения горных пород различной крепости на откосах высоких уступов при открытой разработке месторождений полезных ископаемых. Устройство...
Тип: Изобретение
Номер охранного документа: 0002618806
Дата охранного документа: 11.05.2017
19.01.2018
№218.016.0592

Регулируемая компрессионно-вакуумная ударная машина двойного действия

Изобретение относится к горному делу и строительству - к машинам ударного действия, применяется при отбойке монолитов, в строительстве для разрушения устаревших фундаментов, при реконструкции зданий, при прокладке трубопроводов, а также в сейсморазведке как источник возбуждения сейсмических...
Тип: Изобретение
Номер охранного документа: 0002630931
Дата охранного документа: 14.09.2017
19.01.2018
№218.016.0784

Реверсивное устройство ударного действия для проходки скважин в грунте

Изобретение относится к строительству, а именно к устройствам ударного действия, и применяется при проходке скважин в грунте при бестраншейной прокладке подземных коммуникаций. Технический результат - обеспечение устойчивой работы в режимах прямого и обратного ходов и упрощение конструкции при...
Тип: Изобретение
Номер охранного документа: 0002631461
Дата охранного документа: 22.09.2017
20.01.2018
№218.016.1373

Компрессионно-вакуумная ударная машина двойного действия

Изобретение относится к машине ударного действия. Машина содержит корпус и размещенный в нем ударник, образующие верхнюю камеру и нижнюю камеру, соединенную с атмосферой, вакуум-компрессор, установленный в верхней части корпуса на диске, образующем камеры над и под диском, ресивер, соединенный...
Тип: Изобретение
Номер охранного документа: 0002634537
Дата охранного документа: 31.10.2017
13.02.2018
№218.016.2127

Способ изготовления свай с уширенной пятой

Изобретение относится к строительству, а именно к изготовлению свай с уширенной пятой. Способ изготовления свай с уширенной пятой включает образование скважины, уширение ее в нижней части и заполнение образовавшейся полости бетоном. Указанное уширение скважины производят подачей в нижнюю часть...
Тип: Изобретение
Номер охранного документа: 0002641684
Дата охранного документа: 19.01.2018
13.02.2018
№218.016.213c

Устройство для ориентированного разрыва горных пород

Изобретение относится к горному делу и может быть использовано для формирования в породных массивах сплошных трещин нужных размеров, повышающих эффективность воздействия на породный массив с целью, например, создания условий, облегчающих обрушение кровли в выработанное пространство. Технический...
Тип: Изобретение
Номер охранного документа: 0002641679
Дата охранного документа: 19.01.2018
04.04.2018
№218.016.3207

Способ бестраншейной прокладки трубопроводов в грунте

Изобретение относится к строительству, используется для прокладки в грунте трубопроводов различного назначения с изменяемой в процессе прокладки траекторией. Способ включает периодический размыв в грунте канала струями газообразующей жидкости, подаваемой через рабочий орган, находящийся в...
Тип: Изобретение
Номер охранного документа: 0002645323
Дата охранного документа: 20.02.2018
Showing 11-18 of 18 items.
13.01.2017
№217.015.689a

Способ оценки напряженного состояния горных пород и устройство для его осуществления

Группа изобретений относится к горному делу и может быть использована для оценки напряженного состояния горных пород в породном массиве и различных сооружений, например плотин. Технический результат - контроль с одного места пространственного распределения напряжений, снижение трудоемкости...
Тип: Изобретение
Номер охранного документа: 0002591708
Дата охранного документа: 20.07.2016
13.02.2018
№218.016.213c

Устройство для ориентированного разрыва горных пород

Изобретение относится к горному делу и может быть использовано для формирования в породных массивах сплошных трещин нужных размеров, повышающих эффективность воздействия на породный массив с целью, например, создания условий, облегчающих обрушение кровли в выработанное пространство. Технический...
Тип: Изобретение
Номер охранного документа: 0002641679
Дата охранного документа: 19.01.2018
10.05.2018
№218.016.39d6

Способ исследования прочностных свойств горных пород на сжатие и устройство для его осуществления

Изобретения относятся к исследованию материалов путем определения их физических свойств и могут быть использованы для статического и динамического сжатия образцов горных пород и определения совокупности физических величин, характеризующих начальную стадию процесса их разрушения, например...
Тип: Изобретение
Номер охранного документа: 0002647189
Дата охранного документа: 14.03.2018
06.07.2018
№218.016.6caa

Стенд для моделирования процесса деформирования грунта вокруг расширяющейся скважины

Изобретение относится к исследованиям процесса деформации и может быть использовано для моделирования процесса деформирования уплотняемого грунта вокруг расширяющейся под давлением скважины, изучения взаимодействия уплотняемого грунта с вытесняемым его пластичным веществом, разработки...
Тип: Изобретение
Номер охранного документа: 0002660313
Дата охранного документа: 05.07.2018
03.10.2018
№218.016.8d39

Стенд для исследования энергообмена в массиве горных пород

Изобретение относится к испытательной технике - к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород для установления возможных причин его опасных динамических проявлений. Стенд содержит опорную раму, размещенные в ней захват для...
Тип: Изобретение
Номер охранного документа: 0002668364
Дата охранного документа: 28.09.2018
19.10.2018
№218.016.946f

Способ ориентированного разрыва горных пород

Изобретение относится к горному делу и может быть применено для формирования в породных массивах систем взаимосвязанных сплошных трещин нужных размеров и форм, обеспечивающих создание в породном массиве непротекающих емкостей, повышающих эффективность скважинно-щелевых технологий добычи...
Тип: Изобретение
Номер охранного документа: 0002670113
Дата охранного документа: 18.10.2018
25.07.2019
№219.017.b845

Тепловой способ добычи высоковязкой нефти через вертикальную скважину с созданием вокруг неё фильтра

Изобретение относится к нефтяной промышленности - области добычи нефти тепловыми методами, и может быть использовано для добычи высоковязкой нефти из вертикальной скважины и создания вокруг нее высокопроизводительного фильтра. Технический результат - снижение удельных тепловых затрат и...
Тип: Изобретение
Номер охранного документа: 0002695421
Дата охранного документа: 23.07.2019
05.10.2019
№219.017.d2a0

Устройство для ориентированного разрыва горных пород

Изобретение относится к горному делу, используется для формирования в горных породах ориентированных трещин нужных размеров, повышающих эффективность воздействия на породный массив с целью, например, создания условий, облегчающих обрушение кровли в выработанное пространство или увеличивающих...
Тип: Изобретение
Номер охранного документа: 0002702041
Дата охранного документа: 03.10.2019
+ добавить свой РИД