×
10.05.2018
218.016.3dc2

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ ТОРЦАМИ РАБОЧИХ ЛОПАТОК И СТАТОРОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения радиального зазора (РЗ) между торцами лопаток рабочего колеса (РК) и статорной оболочкой газотурбинного двигателя (ГТД). Предложен способ измерения радиальных зазоров между торцами лопаток рабочего колеса в процессе его вращения и статорной оболочкой газотурбинного двигателя. Техническим результатом является повышение точности измерения при снижении воздействия температуры, а также сокращение числа датчиков и установочных отверстий в каждой точке контроля. Для измерения радиальных зазоров между торцами лопаток рабочего колеса и статором газотурбинного двигателя первый и второй одновитковые вихретоковые датчики, включенные в дифференциальную измерительную цепь, размещают раздельно в двух точках контроля над лопаточным венцом рабочего колеса на статорной оболочке газотурбинного двигателя со сдвигом в угловом направлении, благодаря чему датчики выполняют рабочие и компенсационные функции поочередно. Далее фиксируют экстремальные значения выходного напряжения измерительной цепи при прохождении центров чувствительных элементов первого и второго датчиков торцом контролируемой лопатки; радиальный зазор между статором и торцом контролируемой лопатки вычисляют в точках контроля по зафиксированным экстремальным значениям напряжения измерительной цепи и заранее снятым градировочным характеристикам. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения радиального зазора (РЗ) между торцами лопаток рабочего колеса (РК) и статорной оболочкой газотурбинного двигателя (ГТД) преимущественно при доводочных испытаниях в условиях высокой температуры среды в проточной части в процессе вращения РК на тех ступенях, где отсутствует осевое смещение РК или его влияние пренебрежимо мало.

Известна система измерения РЗ в компрессоре ГТД, в которой для уменьшения влияния изменений температуры окружающей среды в зоне размещения датчика реализован способ, предусматривающий размещение в каждой точке измерения двух одновитковых вихретоковых датчиков (ОВТД) с чувствительными элементами (ЧЭ) в виде отрезка проводника, включенных в дифференциальную измерительную цепь. Один из датчиков является рабочим и по изменению его информативного параметра в момент прохождения торца лопатки с номером k зоны чувствительности датчика определяется РЗ. Второй датчик является компенсационным и смещен на минимальное расстояние относительно рабочего датчика в направлении вращения лопаточного колеса так, чтобы в момент нахождения торца одной из лопаток под центром ЧЭ рабочего датчика центр ЧЭ компенсационного датчика находился в центре межлопаточного промежутка. Компенсационный и рабочий датчики имеют одинаковое конструктивное исполнение, что позволяет в дифференциальной измерительной цепи получить снижение воздействия температуры на датчики и в конечном итоге на результат измерения. (Методы и средства измерения многомерных перемещений элементов конструкций силовых установок / Под ред. Секисова Ю.Н., Скобелева О.П. - Самара, Самарский научный центр РАН, 2001, 188 с., стр. 127-130 и 65-72.)

Рассмотренный способ используется и в более современных средствах измерения РЗ. В них измерительная цепь и аналого-цифровой преобразователь объединены в один блок и размещены на предельно малом расстоянии от датчиков (С.Ю. Боровик, М.М. Кутейникова, Б.К. Райков, Ю.Н. Секисов, О.П. Скобелев. Измерение радиальных зазоров между статором турбины и торцами лопаток сложной формы с помощью одновитковых вихретоковых датчиков // Мехатроника, автоматизация, управление, 2013, - №10, с. 38-46).

Недостатками способа являются необходимость установки в каждой точке контроля для измерения радиального зазора двух корпусов датчиков - рабочего и компенсационного, и, как следствие, ослабление прочности статорной оболочки ГТД в точке контроля за счет двух установочных отверстий. В ГТД, предназначенных для авиации, статорная оболочка в связи с необходимостью минимизации веса имеет предельно малую толщину, следовательно, не предусмотренные при проектировании и необходимые лишь при доводочных испытаниях дополнительные отверстия для установки датчиков РЗ ослабляют расчетную прочность статорной оболочки.

Целью изобретения является измерение радиальных зазоров в двух точках контроля при сохранении снижения воздействия температуры одновитковых вихретоковых датчиков на результат преобразования, а также сокращение числа датчиков и установочных отверстий в каждой точке контроля.

Указанная цель достигается новым размещением ОВТД на статоре ГТД и дополнительными операциями обработки сигналов с измерительной цепи.

Для измерения радиальных зазоров между торцами лопаток рабочего колеса и статором газотурбинного двигателя, первый и второй одновитковые вихретоковые датчики, включенные в дифференциальную измерительную цепь, размещают раздельно в двух точках контроля над лопаточным венцом рабочего колеса на статорной оболочке газотурбинного двигателя со сдвигом в угловом направлении, благодаря чему датчики выполняют рабочие и компенсационные функции поочередно; фиксируют экстремальные значения выходного напряжения измерительной цепи при прохождении центров чувствительных элементов первого и второго датчиков торцом контролируемой лопатки; радиальный зазор между статором и торцом контролируемой лопатки вычисляют в точках контроля по зафиксированным экстремальным значениям напряжения измерительной цепи и заранее снятым градировочным характеристикам.

Измерение радиальных зазоров проводится в двух точках контроля с минимальным числом датчиков и установочных отверстий в статоре двигателя при сохранении снижения влияния температуры на процесс преобразования, свойственного дифференциальной измерительной цепи, а по результатам измерения судят об изменении положения статорной оболочки относительно рабочего колеса.

Для измерения используют два одновитковых вихретоковых датчика с чувствительными элементами в виде отрезка проводника Д1 и Д2, включенные в дифференциальную измерительную цепь, которые размещают раздельно в двух точках контроля над лопаточным венцом контролируемого рабочего колеса. Угловое положение по окружности статора β1 первого датчика Д1 принимается за начальное (β1 равно 0).

Второй датчик Д2 устанавливают относительно первого Д1 со смещением в направлении вращения лопаточного колеса на заданный угол β (фиг. 1), отвечающий условию

β=Δβ(Р+0,5),

где Δβ - угловой шаг лопаток на контролируемом колесе;

Р - заданное число шагов, на которое смещается Д2 относительно Д1.

Процесс преобразования выполняется во время перемещения лопаток Л относительно одновитковых вихретоковых датчиков при вращении колеса и включает подачу последовательности одиночных импульсов питания амплитудой Е (фиг. 2 эпюры 1, 2, 3) на измерительную цепь, формирование выходного сигнала U измерительной цепи в ответ на каждый импульс питания

где L1 - величина индуктивности первого датчика;

L2 - величина индуктивности второго датчика.

В общем случае индуктивность любого из датчиков определится выражением

L=L0-ΔLk+ΔLT,

где L0 - индуктивность датчика при отсутствии лопатки под датчиком (ЧЭ находится в межлопаточном промежутке);

ΔLk - величина изменения индуктивности датчика от влияния зазора между торцом контролируемой лопатки Лk с номером k и чувствительным элементом;

ΔLT - величина изменения индуктивности датчика от изменения температуры.

Индуктивность одновиткового вихретокового датчика уменьшается по мере прохождения торцом лопатки зоны его чувствительности и в момент нахождения торца лопатки под центром ЧЭ зависимость L(t) имеет экстремум, при этом изменение индуктивности датчика от взаимодействия с лопаткой достигает наибольшей величины ΔLk max.

С учетом принятого размещения датчиков, если Лk находится в зоне чувствительности Д1, то ЧЭ датчика Д2 находится между лопатками ЛK-(k+P+1) и ЛK-(k+P) (К - количество лопаток, установленных на рабочем колесе) и, следовательно, Д1 выполняет роль рабочего, а Д2 - компенсационного датчиков. Через половину шага лопатка ЛK-(k+P) войдет в зону чувствительности Д2, а Д1 будет находиться между Лk и Лk+1, при этом Д2 будет выполнять роль рабочего, а Д1 - компенсационного датчиков.

Последовательность значений выходных сигналов U1 в ответ на импульсы питания Е при прохождении лопаток Лk и Лk+1, показанных на фиг. 2, эпюра 4, находится в положительной области. Выходные сигналы U2, соответствующие прохождению лопаток ЛK-(k+P+1) и ЛK-(k+Р) под датчиком Д2, сдвинуты относительно сигналов U1 на половину шага лопаток и находятся в отрицательной области.

В качестве информационных сигналов с измерительной цепи используются экстремальные значения Uэ(t). В момент прохождения торцом контролируемой лопатки Лk с номером k под центром чувствительного элемента первого датчика индуктивности датчиков будет иметь следующие значения:

где ΔL1kmax - величина изменения индуктивности датчика от влияния зазора между торцом контролируемой лопатки Лk и чувствительным элементом;

ΔL1T - величина изменения индуктивности первого датчика от изменения температуры;

ΔL2T - величина изменения индуктивности второго датчика от изменения температуры.

В момент прохождения торцом контролируемой лопатки Лk под центром ЧЭ второго датчика индуктивности датчиков будет иметь следующие значения:

В связи с идентичностью ОВТД, а также одинаковой температурой в зоне лопаточного венца при вращении колеса, можно принять

В результате экстремальные значения сигналов с измерительной цепи при прохождении лопатки с номером k центров чувствительных элементов Д1 и Д2 определятся следующими выражениями:

По величине Uэ1k, Uэ2k и имеющемуся заранее снятому семейству градуировочных характеристик как функции двух переменных

y11(UЭ1k, UЭ2k)

y22(UЭ1k, UЭ2k)

вычисляются радиальные зазоры y1 и y2 между внутренней поверхностью статора и торцом контролируемой лопатки k в точках установки датчиков Д1 и Д2.

Таким образом, достигнуто измерение зазоров в двух точках контроля с минимальным числом одновитковых вихретоковых датчиков и, соответственно, установочных отверстий в статоре ГТД при сохранении снижения влияния температуры, свойственного дифференциальной измерительной цепи. Так как ΔLT много меньше L0, то оставшаяся в знаменателе составляющая ΔLT оказывает незначительное влияние на выходной сигнал, которое устраняется градуировкой датчиков с учетом температуры.

Кроме того, возможность измерять РЗ в двух точках без увеличения технических средств прототипа позволяет расширить число контролируемых параметров при испытаниях ГТД. В частности, при установке датчиков по двум координатным осям (β приблизительно равен 90 градусов), по величине радиальных зазоров y1k и y2k для лопатки с номером k на различных режимах работы двигателя можно оценить не совпадение осей ротора и статора, прецессию ротора, определить вектор биения ротора и др.

Способ измерения радиальных зазоров между торцами лопаток рабочего колеса в процессе его вращения и статорной оболочкой газотурбинного двигателя с помощью двух одновитковых вихретоковых датчиков с чувствительными элементами в виде отрезка проводника, включенных в дифференциальную измерительную цепь, отличающийся тем, что датчики размещают в двух точках контроля, причем в каждой точке контроля устанавливают один датчик, а функции рабочего и компенсационного датчики выполняют поочередно: фиксируют экстремальное значение выходного напряжения измерительной цепи при прохождении центра чувствительного элемента первого датчика торцом контролируемой лопатки; фиксируют экстремальное значение выходного напряжения измерительной цепи при прохождении центра чувствительного элемента второго датчика торцом контролируемой лопатки; радиальный зазор между статором и торцом контролируемой лопатки вычисляют в двух точках контроля по зафиксированным экстремальным значениям напряжения измерительной цепи и заранее снятым градировочным характеристикам.
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ ТОРЦАМИ РАБОЧИХ ЛОПАТОК И СТАТОРОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ ТОРЦАМИ РАБОЧИХ ЛОПАТОК И СТАТОРОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ ТОРЦАМИ РАБОЧИХ ЛОПАТОК И СТАТОРОМ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 11-12 of 12 items.
06.12.2018
№218.016.a416

Способ измерения радиальных зазоров между торцами рабочих лопаток и статором турбомашины и определения температуры рабочей среды в проточной части

Изобретение относится к области измерительной техники и может быть использовано для измерения радиальных зазоров (РЗ) между торцами рабочих лопаток турбомашины и чувствительным элементом (ЧЭ) одновиткового вихретокового датчика, установленного на статорной оболочке турбомашины, а также...
Тип: Изобретение
Номер охранного документа: 0002674079
Дата охранного документа: 04.12.2018
13.12.2018
№218.016.a5f4

Способ обнаружения частиц металла в системе смазки узлов трения силовых установок с разбиением на группы по размерам частиц

Изобретение относится к способам оперативного бортового контроля технического состояния работающего газотурбинного двигателя (ГТД) на наличие магнитных и немагнитных частиц металла в потоке масла системы смазки. Сущность изобретения заключается в том, что способ обнаружения частиц металла в...
Тип: Изобретение
Номер охранного документа: 0002674577
Дата охранного документа: 11.12.2018
Showing 11-19 of 19 items.
06.12.2018
№218.016.a416

Способ измерения радиальных зазоров между торцами рабочих лопаток и статором турбомашины и определения температуры рабочей среды в проточной части

Изобретение относится к области измерительной техники и может быть использовано для измерения радиальных зазоров (РЗ) между торцами рабочих лопаток турбомашины и чувствительным элементом (ЧЭ) одновиткового вихретокового датчика, установленного на статорной оболочке турбомашины, а также...
Тип: Изобретение
Номер охранного документа: 0002674079
Дата охранного документа: 04.12.2018
13.12.2018
№218.016.a5f4

Способ обнаружения частиц металла в системе смазки узлов трения силовых установок с разбиением на группы по размерам частиц

Изобретение относится к способам оперативного бортового контроля технического состояния работающего газотурбинного двигателя (ГТД) на наличие магнитных и немагнитных частиц металла в потоке масла системы смазки. Сущность изобретения заключается в том, что способ обнаружения частиц металла в...
Тип: Изобретение
Номер охранного документа: 0002674577
Дата охранного документа: 11.12.2018
17.04.2019
№219.017.153a

Способ и устройство измерения крутящего момента в системе управления колесного транспортного средства

Изобретение относится к транспортному машиностроению, а именно к рулевым приводам с сервомеханизмами и может быть использовано в системе управления усилителем руля. Способ предусматривает выработку на выходе устройства измерения крутящего момента сигнала, пропорционального моменту,...
Тип: Изобретение
Номер охранного документа: 0002274573
Дата охранного документа: 20.04.2006
29.04.2019
№219.017.3e62

Способ измерения многомерных перемещений и обнаружения колебаний торцов лопаток ротора турбомашины

Использование: для измерения многомерных перемещений и обнаружения колебаний торцов лопаток ротора турбомашины. Сущность изобретения: заключается в том, что в предлагаемом способе измерения производят раздельное определение смещений торцов лопаток в радиальном и осевом направлениях и в...
Тип: Изобретение
Номер охранного документа: 0002272990
Дата охранного документа: 27.03.2006
29.04.2019
№219.017.3e7e

Способ обнаружения помпажа и оценки параметров помпажных колебаний в компрессорах газотурбинных установок

Изобретение относится к измерительной технике и может быть использовано для диагностики помпажа - продольных автоколебаний, несанкционированно возникающих в компрессорах газотурбинных установок, а также для оценки параметров помпажных колебаний. Технический результат: упрощение обнаружения...
Тип: Изобретение
Номер охранного документа: 0002273831
Дата охранного документа: 10.04.2006
29.04.2019
№219.017.423d

Способ оценки деформации статора и параметров биения ротора газотурбинного двигателя

Изобретение относится к измерительной технике и может быть использовано для оценки деформации статора газотурбинного двигателя. Техническим результатом является обнаружение и количественная оценка деформации элементов конструкции ГТД в рабочем режиме в зоне установки кластерных вихретоковых...
Тип: Изобретение
Номер охранного документа: 0002379626
Дата охранного документа: 20.01.2010
24.05.2019
№219.017.600f

Способ обнаружения крутильных и изгибных смещений торцов лопаток рабочего колеса осевого компрессора при исследованиях срывных явлений

Изобретение относится к измерительной технике. Технический результат: упрощение технических средств бесконтактного измерения смещений торцов лопаток компрессора, снижение числа установочных отверстий и площади нарушенной поверхности статора, необходимой для установки преобразователей, повышение...
Тип: Изобретение
Номер охранного документа: 0002320957
Дата охранного документа: 27.03.2008
25.06.2020
№220.018.2b5c

Способ обнаружения и оценки размеров единичных частиц металла в системе смазки пар трения силовых установок

Использование: для обнаружения и регистрации металлических частиц износа в потоке масла. Сущность изобретения заключается в том, что способ обнаружения и оценки размеров единичных частиц металла в системе смазки пар трения силовых установок заключается в прокачке масла системы смазки двигателя...
Тип: Изобретение
Номер охранного документа: 0002724309
Дата охранного документа: 22.06.2020
20.04.2023
№223.018.4ac5

Вихретоковый датчик со смещенным чувствительным элементом

Изобретение относится к устройствам измерения осевого смещения и радиальных зазоров лопаточных и зубчатых колес в газотурбинных двигателях и других силовых установках. Технический результат – обеспечение возможности измерения радиальных зазоров и осевых смещений лопаточных и зубчатых колес...
Тип: Изобретение
Номер охранного документа: 0002778031
Дата охранного документа: 12.08.2022
+ добавить свой РИД