×
10.05.2018
218.016.3ccc

Способ получения водного раствора полианилина

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Настоящее изобретение относится к способу получения водных растворов полианилина, а также к способу получения многокомпонентных композиционных графеновых материалов на основе полианилина. Способ включает обработку полианилина водным раствором фенолформальдегидной смолы резольного типа (ФФС). Полианилин используют в форме основания. Массовое соотношение фенолформальдегидной смолы к полианилину составляет от 0,25:1 до 2:1. Способ получения композиционных материалов на основе полианилина заключается в приготовлении водных дисперсий компонентов, стабилизированных ФФС, смешении водных дисперсий компонентов и коагуляции смеси за счет понижения рН. Вышеуказанный способ позволяет придать растворимость полианилину в воде и в обычных органических растворителях, что в свою очередь позволяет перерабатывать этот полимер и изготавливать из него различные композиционные материалы и изделия. 2 н.п. ф-лы, 1 ил., 1 табл., 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к технологии проводящих полимеров, конкретно к технологии переработки полианилина.

Полианилин (ПАНИ) является электропроводящим полимером с системой сопряженных связей. ПАНИ получают окислительной полимеризацией анилина в кислом водном растворе. В качестве окислителя обычно применяют персульфат аммония. Если ПАНИ осажден из кислого водного раствора (например, в присутствии минеральной кислоты), часть атомов азота протонируются, а анион кислоты входит в состав ПАНИ. Обычной формой ПАНИ является зеленый эмеральдин, содержащий, например, соляную кислоту. Если протонированный ПАНИ обработать основанием (например, аммиаком) и затем промыть водой, кислотные остатки уходят и получается эмеральдин-основание. ПАНИ в различных формах находит применение для создания композиционных материалов, радиопоглощающих покрытий, химических источников тока, для адсорбции вредных неорганических веществ, биологически активных молекул, обезвреживания бактерий, вирусов, и в других областях техники. Проблемой, затрудняющей применение ПАНИ в технике, является его нерастворимость в воде и в большинстве органических растворителей. Из известных органических растворителей полианилин растворяется только в N-метилпирролидоне (и то после растворения образует гель) и в N,N'-диметилпропилен-мочевине [R. Jain, R.V. Gregory. Solubility and rheological characterization of polyaniline base in N-methyl-2-pyrrolidinone and N,N'-dimethylpropylene urea // Synthetic Metals. 1995. Vol. 74. P. 263-266]. Было проведено много исследований с целью найти способ придания растворимости полианилину в обычных органических растворителях и в воде, что дало бы возможность переработки этого полимера и изготовления из него различных композиционных материалов и изделий.

Ряд публикаций было посвящено синтезу органорастворимых форм полианилина.

В работе [Qiang Z., Liang G., Gu A., Yuan L. Hyperbranched polyaniline: A new conductive polyaniline with simultaneously good solubility and super high thermal stability // Materials Letters. 2014. Vol. 115. P. 159-161] описан синтез сверхразветвленного полианилина, отличающегося хорошей растворимостью в неполярных и малополярных растворителях. Синтез проводят путем обработки полианилина сверхразветвленным полисилоксаном.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным реагентом.

Недостатком данного способа является применение в качестве реагента полисилоксанового вещества, синтез которого очень сложен. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [Paul R.K., Vijayanathan V., Pillai C.K.S. Meltrsolution processable conducting polyaniline: dopingstudies with a novel phosphoric acid ester // Synthetic Metals. 1999. Vol. 104. Is. 3. P. 189-195] описан способ получения полианилина, растворимого в неполярных и малополярных органических растворителях, путем обработки полианилина 3-пентадецилфенольным эфиром фосфорной кислоты (ПДФФ). Синтез проводили или путем эмульсионной окислительной полимеризации анилина в присутствии ПДФФ или же путем механической обработки заранее синтезированного полианилина в форме эмеральдинового основания с ПДФФ. Полученный модифицированный полианилин растворяется в неполярных и малополярных органических растворителях.

Общими существенными признаками известного и заявляемого способа является обработка полианилина органическим реагентом, обладающим свойствами ПАВ.

Недостатком данного способа является применение в качестве реагента дорогостоящего органического реагента. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [Bicak N., Senkal B.F., Sezer Е. Preparation of organo-soluble polyanilines in ionic liquid // Synthetic Metals. 2005. Vol. 155. Is. 1. P. 105-109] описан способ приготовления органо-растворимого полианилина. Окислительную полимеризацию хлористого анилиния с персульфатом аммония проводили в новой ионной жидкости, 2-гидроксиэтил аммоний формиате. Полианилин, полученный этим способом, хорошо растворим во многих органических растворителях, таких как ацетон, тетрагидрофуран, диоксан, диметилформамид и N-метил, 2-пирролидон.

Общими существенными признаками известного и заявляемого способа является обработка полианилина органическим реагентом. Недостатком данного способа является применение в качестве реагента дорогостоящего органического реагента. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [Wang Y., Chen K., Li Т. [et al.] Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization // Synthetic Metals. 2014. Vol. 198. P. 293-299] растворимые в органических растворителях нановолокна полианилина были получены с помощью эмульсионной окислительной полимеризации анилина в присутствии фумаровой кислоты.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

В работе [Morales G.М., Salavagione Н.J., Grumelli D.E. [et al.] Soluble polyanilines obtained by nucleophilic addition of arenesulphinic acids // Polymer. 2006. Vol. 47. Issue 25. P. 8272-8280] растворимые в органических растворителях формы полианилина были получены обработкой полианилина в форме основания аренсульфиновыми кислотами.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

В работе [Liu P. Synthesis and characterization of organo-soluble conducting polyaniline doped with oleic acid // Synthetic Metals. 2009. Vol. 159. Is. 1-2. P. 148-152] растворимые в органических растворителях формы полианилина были получены эмульсионной окислительной полимеризацией анилина в присутствии олеиновой кислотой в качестве поверхностно-активного и легирующего вещества. Полианилин, полученный по этому методу, хорошо растворим во многих органических растворителях, таких как диметилсульфоксид (ДМСО), диметилформамид (ДМФ) и N-метил, 2-пирролидон (NMP).

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

Работа с органическими растворителями, вполне приемлемая в лабораторных условиях, в условиях производства связана с такими проблемами, как токсичность, пожароопасность, утилизация отходов. Поэтому технологически наиболее удобными формами полианилина для применения в различных областях являются водорастворимые формы. Далее рассмотрены ряд публикаций, в которых описано получение растворимых в воде форм полианилина.

В работе [Ito S., Murata К., Teshima S. [et al.] Simple synthesis of water-soluble conducting polyaniline // Synthetic Metals. 1998. Vol. 96. Issue 2. P. 161-163] описан синтез водорастворимого полианилина. Полианилин в форме эмеральдиновой соли сульфируют хлорсульфоновой кислотой в дихлорэтане при 80°С и затем гидратируют в воде при температуре 100°С. Сульфирование эмеральдиновой соли или эмеральдинового основания приводит к получению HCl-легированного сульфонированного полианилина. Степень сульфирования (отношение серы и азота, S/N) можно регулировать путем регулирования количества хлорсульфоновой кислоты. С увеличением отношения S/N от 0,65 до 1,3 растворимость в нейтральной воде увеличивается от 22 до 88 г/л.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является применение в качестве реагента агрессивного и токсичного вещества - хлорсульфоновой кислоты, а в качестве среды для проведения реакции используется дихлорэтан, который является крайне высокотоксичным веществом кумулятивного действия. Кроме того, данный синтез является сложным и многостадийным.

В работе [Planes G.A., Morales G.М., Miras М.С, Barbero С.А soluble and electroactive polyaniline obtained by coupling of 4-sulfobenzenediazonium ion and poly (N-methylaniline) // Synthetic Metals. 1998. Vol. 97. Issue 3. P. 223-227] описан способ получения водорастворимого производного поли(N-метиланилина) путем обработки поли(N-метиланилина) солью диазония.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полимерного производного анилина азотсодержащим органическим веществом.

Недостатком данного способа является сложный, долгий процесс модификации. Необходим точный контроль температуры и рН, иначе идут побочные реакции.

В работе [Amarnath С.А., Palaniappan S., Rannou P., Pron A. Acacia stabilized polyaniline dispersions: preparation, properties and blending with poly(vinyl alcohol) // Thin Solid Films. 2008. Vol. 516. Issue 10. P. 2928-2933] коллоидный водный раствор полианилина готовили путем окислительной полимеризации анилина в растворе поверхностно-активного вещества (ПАВ), в качестве которого применяли смолу акации.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина поверхностно-активным веществом.

Недостатком данного способа является многостадийный и сложный процесс получения композита ПАНИ-АКАЦИЯ. При этом для получения тонкой коллоидной дисперсии ПАНИ необходимо выделение комплекса ПАНИ со смолой акации с повторным диспергированием в воде. Кроме того, смола акации, применяемая в качестве ПАВ, остается в продукте и это может мешать для ряда применений ПАНИ.

В работе [Gu Y., Tsai Ju-Ya. Enzymatic synthesis of conductive polyaniline in the presence of ionic liquid // Synthetic Metals. 2012. Vol. 161. Issue 23-24. P. 2743-2747] тонкодисперсный полианилин, обладающий способностью диспергироваться в воде, получали ферментативной полимеризацией анилина в присутствии пероксидазы, анионного ПАВ - додецилбензолсульфоната натрия и ионной жидкости.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина ПАВ.

Недостатком данного способа является многостадийный и сложный синтез с применением дорогостоящих реагентов. Кроме того, применяемое ПАВ остается в продукте, что может мешать для ряда применений полианилина.

В работе [Zou F., Xue L., Yu X. [et al.] One step biosynthesis of chiral, conducting and water soluble polyaniline in AOT micellar solution // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013. Vol. 429. P. 38-43] описан способ синтеза водорастворимого полианилина путем полимеризации анилина в мицеллярном растворе бис-натрия (2-этилгексил) сульфосукцината. В качестве окислителя применяли систему пероксидаза хрена (ПХ)/H2O2.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина ПАВ.

Недостатком данного способа является многостадийный и сложный синтез с применением дорогостоящих реагентов. Кроме того, применяемое ПАВ остается в продукте, что может мешать для ряда применений полианилина.

В работе [Shao L., Qiu J., Liu M. [et al.] Synthesis and characterization of water-soluble polyaniline films // Synthetic Metals. 2011. Vol. 161. Issue 9-10. P. 806-811] растворимая в воде форма полианилина была синтезирована в две стадии. Вначале проводили полимеризацию 2-акриламидо-2-метил-пропансульфоновой кислоты в водном растворе в присутствии персульфата аммония в качестве инициатора радикальной полимеризации. Затем в полученный водный раствор полимера, растворимого в воде благодаря наличию сульфогрупп, добавляли анилин, еще персульфат аммония и проводили окислительную полимеризацию анилина. При этом получали гибридный материал, в котором полимерные цепи полианилина были соединены с полимерными цепями указанного водорастворимого полимера.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что он достаточно сложный, применяются дорогостоящие реагенты. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе заранее приготовленного полимера, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

В работе [Nakajima K., Kawabata K., Goto Н. Water soluble polyaniline/polysaccharide composite: Polymerization, carbonization to yield carbon micro-bubbles // Synthetic Metals. 2014. Vol. 194. P. 47-51] растворимая в воде форма полианилина была синтезирована путем окислительной полимеризации анилина в присутствии персульфата аммония и полисахарида - альгиновой кислоты. В этих условиях образуется комплексное вещество, в котором полимерные цепи альгиновой кислоты соединены с цепями полианилина, что и обуславливает растворимость этого вещества в воде.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что наличие в полученном композите большой массовой доли вещества другой химической природы меняет свойства полианилина. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе альгиновой кислоты, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

В работе [Li Y., Ying В., Hong L., Yang M. Water-soluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing // Synthetic Metals. 2010. Vol. 160. Issue 5-6. P. 455-461] растворимая в воде форма полианилина была синтезирована путем окислительной полимеризации анилина в присутствии персульфата аммония и полистиролсульфоновой кислоты.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что наличие в полученном композите большой массовой доли вещества другой химической природы меняет свойства полианилина. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе полистиролсульфоновой кислоты, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

Наиболее близким к заявляемому изобретению является способ получения растворимой в воде формы полианилина путем обработки полианилина в форме основания эфиром полиэтиленгликоля и фосфорной кислоты, описанный в работе [Geng Y.H., Sun Z.C., Li J. [et al.] Water soluble polyaniline and its blend films prepared by aqueous solution casting // Polymer. 1999. Vol. 40. Issue 20. P. 5723-5727]. Вначале проводили синтез указанного эфира. Для этого полиэтиленгликоль добавляли к суспензии пентоксида фосфора в бензоле, нагревали в течение определенного времени, затем отгоняли бензол. Получали смесь моно- и ди-гидроксилсодержащих эфиров фосфорной кислоты. Этим веществом обрабатывали полианилин (основание). В результате протонирования атомов азота полианилина протонами фосфатных групп полиэтиленгликолевые цепочки присоединялись к частицам полианилина и получалась водорастворимая форма полианилина.

Общими существенными признаками известного и заявляемого способа является обработка готового полианилина полимерным реагентом в водном растворе.

Недостатком данного способа является его сложность. Синтез полиэтиленгликоль-фосфатного эфира даже в лабораторных условиях сложен. Бензол, применяемый в качестве среды, токсичен. Недостатком известного способа, равно как и ранее рассмотренных способов, в которых для придания полианилину растворимости применяются производные сульфокислот или сульфогруппа вводится в состав молекулы полианилина, также является то, что наличие фосфатных или сульфо-групп может мешать применению полианилина, например, в химических источниках тока, для синтеза нанокомпозиционных материалов.

В основу заявляемого изобретения поставлена задача, путем обработки заранее синтезированного полианилина полимерным реагентом другой природы, получить водный раствор полианилина, устранив при этом недостатки известного способа.

Поставленная задача решается тем, что в способе получения водного раствора полианилина, включающем обработку полианилина водным раствором полимерного реагента, в качестве полимерного реагента используют водорастворимую фенолформальдегидную смолу (ФФС) резольного типа при массовом соотношении ФФС к полианилину (в расчете на сухие вещества) от 0,25:1 до 2:1.

Обработку проводят при действии ультразвука, хотя возможно применение диспергирующих устройств, работающих на других физических принципах, например, роторно-импульсного аппарата, различных дезинтеграторов. Способ может быть также применен для получения композиционных материалов на основе полианилина. Для этого готовят водные дисперсии (коллоидные растворы) компонентов, стабилизированных ФФС, смешивают растворы компонентов, и проводят коагуляцию смеси за счет понижения рН.

Способ иллюстрируется фигурой графического изображения, на которой показано распределение частиц по диаметрам в водном растворе полианилина, полученном по примеру 1.

Далее приводятся примеры реализации заявляемого изобретения. Для осуществления изобретения применяли фенолформальдегидную смолу. Применяется резольная водорастворимая фенолформальдегидная смола марки «Фенотам GR-326», выпускается ОАО Крата (Тамбов). Согласно ТУ 2221-337-05800142-2012, эта смола представляет собой смесь первичных продуктов конденсации фенола с формальдегидом в присутствии щелочного катализатора (резола) и представляет собой прозрачную жидкость от красновато-коричневого до темно-вишневого цвета без механических примесей. Массовая доля нелетучих веществ при температуре 105°С, %, не менее 50% (фактически 50%).

Полианилин в форме зеленого эмеральдина (солянокислой соли) был синтезирован по стандартной методике, описанной в [J. Stejskal. Polyaniline. Preparation of a conductive polymer (IUPAC Technical Report) // Pure Appl. Chem., 2002, vol. 74, No. 5, pp. 857-862]. Для перевода в форму основания зеленый эмеральдин обрабатывали раствором аммиака и затем отмывали аммиак водой.

Ультразвуковую обработку проводили с помощью лабораторной ультразвуковой установки ИЛ-10.

Размер частиц полианилина в растворах определяли с помощью лазерного анализатора размеров частиц Nicomp 380 DLS.

Пример 1

В стакан емкостью 250 мл внесли 1 г полианилина в форме основания, 1 г водной ФФС (=0,5 г сухой ФФС) и добавили воду до общей массы 100 г. Смесь обработали ультразвуком в течение 1 часа на 50% мощности излучателя при охлаждении в бане с холодной водой. Получили темно-синий прозрачный раствор без осадка, стабильный при стоянии.

Для определения размеров частиц полианилина в этом растворе каплю раствора разбавили до приемлемой оптической плотности и исследовали с помощью лазерного анализатора размеров частиц Nicomp 380 DLS. Результат приведен на фиг. 1, на котором показано распределение числа частиц по диаметрам (нм) в водном растворе полианилина, солюбилизированном ФФС.

Средний диаметр частиц равен 84,6 нм.

Пример 2

Повторили пример 1, но водной ФФС взяли 0,5 г (=0,25 г сухой ФФС). Получили темно-синий прозрачный раствор без осадка, стабильный при стоянии.

Пример 3

Повторили пример 1, но водной ФФС взяли 4 г (=2 г сухой ФФС). Получили темно-синий прозрачный раствор без осадка, стабильный при стоянии.

При дальнейшем увеличении количества ФФС полезный результат также достигается, однако целесообразность применения избытка смолы нужно оценить исходя из требований для конкретного применения.

Наиболее удобно для получения растворов полианилина применять ультразвук. Однако, растворы могут быть получены также с применением других физических методов диспергирования, например, роторно-импульсного аппарата, различных дезинтеграторов.

Пример 4

Исходную смесь приготовили по рецептуре примера 1, но обработку провели в течение 30 мин при охлаждении в водяной бане с холодной водой с помощью гомогенизатора HG-15A DAIHAN Scientific Co. Ltd., в котором диспергирующий узел представляет собой стальной ротор с прорезями, вращающийся с высокой скоростью в статоре с прорезями. Получили прозрачный темно-синий раствор, стабильный при стоянии.

Следует отметить, что коллоидные растворы, стабилизированные ФФС, стабильны только при слабощелочном или щелочном рН (в исходной ФФС содержится 7% щелочи в качестве стабилизатора). При понижении рН, что может быть сделано добавлением кислоты, происходит коагуляция коллоидных растворов. Этот эффект может быть применен для синтеза сложных композиционных материалов на основе полианилина.

Пример 5 (синтез многокомпонентного нанокомпозиционного материала)

Синтез включает следующие стадии.

1) получение коллоидной дисперсии графеновых нанопластинок, стабилизированных ФФС

Синтезировали расширенное соединение графита (РСГ) из 5 г графита ГСМ-2 согласно методике, описанной в работе [Melezhyk A.V., Tkachev A.G. / Synthesis of graphene nanoplatelets from peroxosulfategraphite intercalation compounds // Nanosystems: Physics, Chemistry, Mathematics. 2014. Vol. 5. №2. P. 294-306].

В 2-литровый стакан поместили влажное РСГ, полученное из 5 г графита, добавили 5 г водной ФФС (=2,5 г сухой ФФС), и воду до общей массы 1500 г. Эту смесь в течение 6 часов обрабатывали ультразвуком при 100% мощности излучателя и непрерывном перемешивании механической мешалкой. При этом скорость протока воды через охлаждающую водяную баню регулировали так, чтобы температуру в обрабатываемом растворе поддерживать в интервале 40-45°С. Получили 1,5 л коллоидной дисперсии графеновых нанопластинок (ГНП), с концентрацией ГНП 3,333 г/л и ФФС 1,667 г/л.

2) осаждение полианилина (ПАНИ) на графеновые нанопластинки, стабилизированные ФФС

В 3-литровый стеклянный реактор, снабженный крышкой с отверстиями для вала мешалки, ввода жидкости и газа, поместили 1,5 л стабилизированной ФФС дисперсию ГНП, полученную на предыдущей стадии. Собрали реактор, включили мешалку фторопластовую (250 об/мин) и включили продувку пространства над раствором аргоном (0,5 л/мин). Добавили раствор (15 мл концентрированной соляной кислоты +15 мл воды). Затем с помощью шприцевого дозатора ДШВ-1 параллельно из двух шприцов емкостью 50+ мл прибавляли растворы:

1) 6,96 г анилина солянокислого ЧДА в воде до общего объема 50 мл

2) 15,31 г персульфата аммония ЧДА в воде до общего объема 50 мл

Добавляли одновременно параллельно эти растворы на диапазоне дозатора С-10. Шприцы еще дважды перезаполняли такими же количествами растворов. Таким образом, всего в реакционную смесь в течение 1 ч 50 мин ввели 150 мл раствора, содержащего 20,88 г анилина солянокислого, и 150 мл раствора, содержащего 45,93 г персульфата аммония. После прибавления этих растворов продолжали перемешивание и продувку аргоном еще 4 часа. На следующий день отфильтровали полученный темно-зеленый осадок, промыли вначале водой, затем водным раствором аммиака, затем снова водой. Получили водную пасту нанокомпозита ПАНИ/ФФС/ГНП. Масса пасты = 245,64 г. Итого, массовое содержание графенового углерода здесь 5 г = 2,04%.

3) получение коллоидного раствора, содержащего графеновые нанопластинки, стабилизированные ФФС, с осажденным на них полианилином, и углеродные нанотрубки, стабилизированные ФФС.

Водную пасту, полученную на предыдущей стадии, поместили в 2-литровый стакан. Прибавили 52,95 г водной пасты углеродных нанотрубок с окисленной поверхностью, содержащей 9,44% УНТ. Затем прибавили 5 г водной ФФС и, при перемешивании, постепенно воду до общей массы 1000 г. Эту смесь в течение 6 часов обрабатывали ультразвуком при 100% мощности излучателя и непрерывном перемешивании механической мешалкой. При этом скорость протока воды через охлаждающую водяную баню регулировали так, чтобы температуру в обрабатываемом растворе поддерживать в интервале 40-45°С. Получили коллоидный раствор, содержащий частицы ПАНИ/ФФС/ГНП и ФФС/УНТ.

4) коагуляция коллоидного раствора (3), фильтрование, промывка и высушивание коагулята

К коллоидному раствору (3) при перемешивании добавили 25 мл 1М уксусной кислоты. Произошло образование геля, смесь загустела. Продукт отфильтровали и промыли водой на фильтре из полипропиленового микроволокна, затем высушили при 110°С в сушильном шкафу, после чего перемололи на кофемолке. Получили 23,10 г черного порошка.

5) термообработку вещества (4)

Вещество, полученное на предыдущей стадии, нагрели в трубчатом кварцевом реакторе, помещенном в трубчатую печь, до 200°С в токе аргона и выдержали 3 часа при этой температуре. Получили 22,5 г черного порошка. Еще раз измельчили его с помощью кофемолки. Рабочее обозначение образца G_135-8.

Таким образом, получили сложный нанокомпозит. Из баланса масс можно рассчитать его состав:

ГНП=21,8%

УНТ=21,8%

ПАНИ=50,9%

ФФС=5,4%

Этот нанокомпозит испытали в качестве электродного материала суперконденсатора в 3М серной кислоте в качестве электролита. Испытания проведены в ООО Рикон (Воронеж) М.Ю. Чайкой. Результаты показаны в таблице:

Как видно, материал показывает очень большую удельную емкость, которая при малой скорости развертки потенциала в 2-3 раза превосходит емкость лучших углеродных материалов аналогичного назначения. В полученном нанокомпозите рабочим компонентом являются наночастицы полианилина (ПАНИ), осажденные на графеновых нанопластинках. Углеродные нанотрубки играют роль спейсеров, не давая смыкаться чешуйкам графена, что привело бы к потере доступной поверхности. ФФС играет роль солюбилизатора на промежуточных стадиях синтеза, а в готовом продукте роль связующего.

Таким образом, еще одним преимуществом заявляемого способа является то, что ФФС, применяемая в качестве солюбилизатора полианилина, при последующей термообработке дает углеродоподобные вещества, не мешающие применению полученных материалов в химических источниках тока. Применение для синтеза нанокомпозитов известных способов растворения полианилина невозможно из-за применяемых сульфо- и фосфато-содержащих компонентов.


Способ получения водного раствора полианилина
Способ получения водного раствора полианилина
Источник поступления информации: Роспатент

Showing 1-10 of 118 items.
13.01.2017
№217.015.8551

Перекрытие здания, сооружения

Предложение относится к области строительства и может быть использовано при возведении жилых, общественных и административных зданий и сооружений, а также при их восстановлении или реконструкции. Технический результат предложения заключается в сокращении трудо- и материалозатрат и обеспечении...
Тип: Изобретение
Номер охранного документа: 0002603106
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88f8

Интегратор постоянного напряжения

Изобретение относится к вычислительной и информационно-измерительной технике. Технический результат - способность определять не только интегральное значение входного сигнала, но и скорость его изменения. Интегратор постоянного напряжения содержит генератор 1 импульсов, двоичный счетчик 2,...
Тип: Изобретение
Номер охранного документа: 0002602675
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8932

Устройство для регистрации суммарного значения параметра

Изобретение относится к измерительной технике. Техническим результатом предлагаемого изобретения является повышение быстродействия и надежности работы устройства. Устройство для регистрации суммарного значения параметра содержит датчик параметра и усилитель, а также последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002602673
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b128

Способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты

Изобретение относится к области исследования теплофизических характеристик анизотропных материалов. Заявлен способ измерения теплофизических свойств анизотропных материалов методом линейного импульсного источника теплоты, заключающийся в том, что образец исследуемого материала изготавливают в...
Тип: Изобретение
Номер охранного документа: 0002613194
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1d0

Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициента диффузии растворителей в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002613191
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b26b

Способ определения удельной теплоемкости сыпучих материалов

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов. Способ определения удельной теплоемкости сыпучих материалов заключается в том, что герметизируют объем с образцом известной массы, образец приводят в тепловой контакт по плоскости с...
Тип: Изобретение
Номер охранного документа: 0002613591
Дата охранного документа: 17.03.2017
25.08.2017
№217.015.b441

Способ охлаждения дыхательной газовой смеси в средствах индивидуальной защиты органов дыхания

Изобретение относится к области спасательной техники, а именно к средствам индивидуальной защиты органов дыхания, преимущественно маятникового типа, работающим на химически связанном кислороде. Дыхательную газовую смесь (ДГС) пропускают между волокнистыми подложками, на которые предварительно...
Тип: Изобретение
Номер охранного документа: 0002614028
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b5ae

Линия приготовления сухой хмелево-тыквенной закваски

Изобретение относится к хлебопекарной промышленности, в частности к производству хлебопекарных заквасок, и может быть использовано в производстве хлеба функционального назначения. Линия предусматривает приготовление двух фаз, фазы порционного приготовления жидкой хмелево-тыквенной закваски и...
Тип: Изобретение
Номер охранного документа: 0002614364
Дата охранного документа: 24.03.2017
26.08.2017
№217.015.e217

Гидродинамический смеситель

Изобретение относится к устройствам для перемешивания, гомогенизации, эмульгирования жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, гидромеханических, тепломассообменных процессов в системах "жидкость-жидкость". Смеситель содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002625874
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e4c4

Электробаромембранный аппарат плоскокамерного типа

Изобретение относится к аппаратам, предназначенным для очистки, разделения и концентрирования растворов электрогиперфильтрационным и электронанофильтрационным методами. Электробаромембранный аппарат плоскокамерного типа состоит из двух фланцев и камер корпуса с каналами ввода и вывода...
Тип: Изобретение
Номер охранного документа: 0002625668
Дата охранного документа: 18.07.2017
Showing 1-10 of 57 items.
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
20.11.2015
№216.013.9268

Способ озонирования углеродных наноматериалов

Изобретение может быть использовано для получения функционализированных углеродных наноматериалов. Углеродные нанотрубки озонируют в проточном сосуде в присутствии трёхокиси серы или азотной кислоты, ускоряющих воздействие озона на их поверхность. Трёхокись серы или азотную кислоту подают в...
Тип: Изобретение
Номер охранного документа: 0002569096
Дата охранного документа: 20.11.2015
+ добавить свой РИД