×
10.05.2018
218.016.3bbc

Результат интеллектуальной деятельности: Способ определения места повреждения воздушных линий в распределительных сетях

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях с изолированной или компенсированной нейтралью. Технический результат – расширение функциональных возможностей на основе определения места однофазного замыкания на землю в линии электропередачи при любом переходном сопротивлении в месте повреждения, не требующего при своей реализации стационарно установленной сложной системы. Для этого обеспечивают поочередную генерацию высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них. На основании поученных данных производят расчет расстояния до места повреждения по выражению: где ƒ - резонансная частота одной из неповрежденных фаз линии, Гц; ƒ - частота, определенная для поврежденной фазы линии, Гц; - длина неповрежденной фазы отходящей линии электропередачи, км. 3 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для оперативного определения места однофазного замыкания на землю в распределительных сетях.

Известен способ определения мест повреждения линий электропередач распределительных сетей (см. патент РФ №2368912, кл. G01R 31/11, опубл. 27.09.2009 г.), основанный на том, что в исследуемую линию генерируют зондирующие импульсы, в качестве которых используют дискретно-кодированные сигналы. Принимают отраженные сигналы. Место повреждения определяют по отсутствию отраженного импульса с информационным признаком, индивидуализирующим, по меньшей мере, конкретное ответвление. В качестве информационного признака используют согласованную фильтрацию дискретно-кодированного сигнала на соответствующих концах линии.

К недостаткам известного способа можно отнести: малое напряжение зондирующего импульса, недостаточное для выявления дефектов изоляции; подверженность импульса явлениям затухания и искажения формы; непригодность применения при неустойчивых повреждениях линии и чувствительность к высокочастотным помехам.

Известен способ определения места повреждения на воздушных линиях электропередачи (см. патент РФ №2426998, кл. G01R 31/11, опубл. 20.08.2011 г.) по значениям мгновенного напряжения Uc на поврежденной фазе в момент возникновения однофазного замыкания на землю, суммарной емкости С0 нулевой последовательности всех линий, подключенных к шинам, максимальной амплитуде тока нулевой последовательности I0,max на поврежденной линии после возникновения однофазного замыкания на землю и погонному индуктивному сопротивлению Lпогонное нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, в соответствии с выражением .

Недостаткам известного способа можно отнести: повышенные требования к величине переходного сопротивления в месте повреждения; непригодность применения при неустойчивых повреждениях линии и чувствительность к высокочастотным помехам.

Наиболее близким по технической сущности заявляемого технического решения является способ, предложенный в патенте «Способ определения места повреждения изоляции в силовой линии электропередачи», патент RU 2413234, опубл. 27.02.2011 г.

В данном способе воздействуют высоковольтным зондирующим напряжением на исследуемую фазу одного из концов предварительно отключенной исследуемой силовой линии, создают колебательный контур из фазного провода линии и предварительно заряженного высоковольтного накопительного конденсатора и определяют расстояние до места повреждения изоляции по измеренному временному интервалу, кратному периоду возбужденного в линии колебательного процесса при известной емкости высоковольтного накопительного конденсатора, удельной индуктивности и активного сопротивления петли «фазный провод - земля» или по отношению временных интервалов поврежденной и неповрежденной фаз при известной длине линии.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, заключаются в том, что при определении места повреждения производят сравнение на предварительно отключенной линии поврежденной и неповрежденной фаз при известной длине линии.

Основным отличием предложенного метода является использование высокочастотного генератора (например, выполненный на базе микросхемы AD9850 фирмы Analog Devices с подключением через настраиваемый каскад усилителей с частотным диапазоном от 1 кГц до 200 кГц) вместо заряженного конденсатора для создания условий резонанса. Компактные габариты высокочастотного генератора позволяют использовать данный способ в переносном устройстве и он может использоваться оперативными бригадами.

Недостатками прототипа являются: необходимость использования сложной стационарной системы, состоящей из предварительно заряженного конденсатора, коммутирующего устройства и системы диагностирования, что не позволяет использовать данный способ в переносном устройстве.

Задача изобретения - разработка способа определения места повреждения в силовой линии электропередачи при металлическом замыкании фазы на землю, не требующего при своей реализации стационарно установленной сложной системы.

Технический результат достигается за счет применения способа определения места однофазного замыкания на землю в распределительных сетях, заключающегося в поочередной генерации высокочастотного синусоидального сигнала в поврежденную и неповрежденную фазы с последующим определением резонансной частоты каждой из них, на основании которых происходит расчет расстояния до места повреждения по выражению

где x - расстояние от подстанции до места повреждения фазы линии, км;

ƒ1 - резонансная частота одной из неповрежденных фаз ВЛ, Гц;

ƒ2 - частота, определенная для поврежденной фазы ВЛ, Гц;

- длина неповрежденной фазы отходящей линии электропередачи, км.

Подключение высокочастотного генератора к неповрежденной фазе с известной длиной линии вызвана необходимостью определения параметров воздушной линии и в, частности, уточнения фазовой скорости распространения волны. Так, например, для воздушной линии 35 кВ на опорах У35-1Т+5 фазовая скорость распространения волны равна 281183 км/с. Поэтому, если при определении места повреждения фазы принять скорость распространения волны равной скорости света, то погрешность составит 6,27%. При длине линии 10 км диапазон нахождения места замыкания на землю составит примерно 600 метров. Сканирование высокой частотой неповрежденной фазы сокращает диапазон нахождения места повреждения до 50 м.

На фиг. 1 рассмотрена схема замещения длинной линии, где ег - электродвижущая сила высокочастотного генераторы, В; L0 - удельная индуктивность линии электропередачи, Гн/км; С0 - удельная емкость линии, Ф/км; Zн - комплексное сопротивление нагрузки, Ом.

На фиг. 2 представлен график распределения напряжения и тока вдоль линии, где U - огибающая амплитуд напряжения при частоте 28 118 Гц, В; I - огибающая амплитуд тока при частоте 28 118 Гц, А; x - расстояние до точки измерения, км. Кривая имеет ярко выраженный максимум, по которому и определяется место повреждения.

На фиг. 3 построена зависимость амплитудного значения тока I в начале линии от частоты источника питания ƒ1.

При синусоидальном напряжении источника питания напряжение в любой точке длинной линии можно представить в виде суммы двух слагаемых,

где - комплексная амплитуда прямой волны напряжения, В;

- комплексная амплитуда обратной волны напряжения, В;

γ - постоянная распространения.

Длина воздушных линий электропередачи напряжением 6-35 кВ находится в пределах 1-30 км. Поэтому для сканирования линий такой длины используется генератор, частота которого изменяется в пределах (200-1) кГц. При таких частотах воздушные линии электропередачи проявляют себя как линии с распределенными параметрами. При металлическом замыкании фазы на землю уравнения, описывающие электромагнитные процессы, имеют следующий вид

где - напряжение в начале линии;

- ток в начале линии;

- волновое сопротивление линии;

x - координата линии, отсчитывающая от ее начала;

- коэффициент фазы;

L0 - удельная индуктивность линии электропередачи, Гн/км;

С0 - удельная емкость линии, Ф/км.

В связи с тем, что удельное индуктивное сопротивление линии X0 во много раз больше удельного активного сопротивления линии R0 (X0>>R0), а удельная емкостная проводимость линии В0 во много раз больше удельной активной проводимости линии G00>>G0), то характеристики линии близки к характеристикам линии без потерь. Поэтому амплитуда отражения волны, примерно, равна амплитуде падающей волны, которые при наложении образуют стоячие волны. Ток в начале линии будет иметь максимальное значение, когда между длиной волны λ и расстоянием до места замыкания провода на землю x будет следующее соотношение

В связи с тем, что между частотой и длиной волны существует следующее соотношение

при изменении частоты и достижении при этом максимального значения тока в начале линии фактически определяется расстояние x до места замыкания фазы.

Предположим, что в воздушной линии, длина которой l=5 км, произошло однофазное замыкание на землю. Определим резонансную частоту неповрежденной фазы, при которой возникает эффект стоячих волн, и построим графики распределения напряжения и тока в линии при следующих параметрах линии:

удельное активное сопротивление - R0=0,6 Ом/км;

удельная активная проводимость - G0=0,000002 См/км;

удельная индуктивность линии - L0=0,00136 Гн/км;

удельная емкость линии - С0=9,3⋅10-9 Ф/км.

На основании уравнений (3-5) резонансная частота для воздушной линии длиной равна

В связи с тем, что фазовая скорость распространения волны вдоль линии неизвестна (зависит от параметров линии) для определения расстояния до места замыкания фазы на землю, необходимо провести два измерения. Первое измерение проводится для неповрежденной фазы, чтобы определить фазовую скорость распространения волны вдоль линии. Второе измерение проводится на поврежденной фазе с целью определения места замыкания по определенной ранее фазовой скорости распространения волны. Предположим, что при проведении измерений на поврежденной фазе получилась частота равная 36700 Гц.

Расстояние до места замыкания будет равно

Построим графики распределения тока и напряжения вдоль линии при частоте ƒРЕЗ=28118 Гц. Максимальные значения огибающих амплитуд напряжения и тока при частоте 28118 Гц соответственно равны: Um=50 В и Im=0,3 А.

Огибающие амплитудных значений напряжения и тока вдоль линии при частоте ƒ1=28118 Гц представлены на фиг. 2, что характерно режиму резонанса на неповрежденной фазе. При этом амплитудное значение тока в начале линии достигает максимального значения в результате того, что входное сопротивление линии при резонансной частоте ƒ1=28 118 Гц минимально. Напряжение, ток и входное сопротивление вдоль линии изменяются по периодическому закону с периодом λ/2. В связи с этим огибающая амплитудных значений напряжения при этом сдвинута относительно кривой тока на λ/4 и достигает своего максимального значения, когда амплитудное значение тока минимально.

На фиг. 3 представлена зависимость значения тока в начале линии от частоты источника питания, подключаемого в начале линии I=ƒ(ƒ1). Ток в начале линии достигает максимального значения при достижении режима резонанса ƒ1рез.

В предлагаемом способе отсутствует необходимость использовать сложные стационарные системы, что делает устройство простым в применении. Фактически устройство является переносным, подключается к поврежденной линии после ее отключения и может быть использовано оперативным персоналом.


Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Способ определения места повреждения воздушных линий в распределительных сетях
Источник поступления информации: Роспатент

Showing 91-100 of 109 items.
24.05.2019
№219.017.5e43

Диодный ключ

Изобретение относится к области импульсной техники. Техническим результатом является снижение величины суммарного управляющего тока диодов и, как следствие, снижение энергопотребления ключа, повышение его коэффициента полезного действия и уменьшение импульсных помех, проникающих в цепь...
Тип: Изобретение
Номер охранного документа: 0002688756
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
22.06.2019
№219.017.8e97

Система коротковолновой радиосвязи с использованием частотно-манипулированных сигналов, передаваемых в режиме псевдослучайной перестройки рабочей частоты

Изобретение относится к области радиосвязи и может быть использовано для передачи дискретных сообщений по коротковолновым каналам связи в условиях действия преднамеренных аддитивных помех. Технический результат заключается в повышении надежности передачи сообщений по каналам радиосвязи в...
Тип: Изобретение
Номер охранного документа: 0002692081
Дата охранного документа: 21.06.2019
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.92a9

Пневматическая подвеска

Изобретение относится к области машиностроения. Пневматическая подвеска содержит резинокордную оболочку с крышкой, образующие основную рабочую полость, дополнительную полость и расположенную между ними перегородку. Дополнительная полость установлена соосно и внутри основной рабочей полости. На...
Тип: Изобретение
Номер охранного документа: 0002692296
Дата охранного документа: 24.06.2019
02.07.2019
№219.017.a2a2

Устройство неинвазивной санации мочеточниковых стентов

Изобретение относится к урологии и предназначено для уменьшения солевой обструкции мочеточниковых стентов. Устройство неинвазивной санации мочеточниковых стентов содержит ультразвуковой генератор, состоящий из силового выпрямителя, фильтра и высокочастотного инвертора с выходным...
Тип: Изобретение
Номер охранного документа: 0002693002
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a31d

Позиционный гидропривод (варианты)

Изобретение относится к машиностроению, а именно к гидроприводам с дискретными позициями, и может быть использовано для осуществления линейного перемещения рабочего органа в устройствах управления транспортными и технологическими машинами. Позиционный гидропривод содержит гидроцилиндр,...
Тип: Изобретение
Номер охранного документа: 0002692880
Дата охранного документа: 28.06.2019
05.07.2019
№219.017.a583

Свая

Изобретение относится к строительству, а именно к конструкциям висячих свай. Свая призматической формы сплошного поперечного сечения, цельная или составная, с поперечным армированием ствола, в качестве формы поперечного сечения используется равносторонний треугольник, сторона которого...
Тип: Изобретение
Номер охранного документа: 0002693628
Дата охранного документа: 03.07.2019
11.07.2019
№219.017.b2b3

Поршневой компрессор

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах для повышения их производительности и надежности. Компрессор содержит цилиндр, установленный в нем с образованием камеры сжатия, поршень, всасывающий и нагнетательный клапаны. На поршне...
Тип: Изобретение
Номер охранного документа: 0002694104
Дата охранного документа: 09.07.2019
06.08.2019
№219.017.bcf2

Способ позначной синхронизации при передаче дискретных сообщений по декаметровым каналам связи

Изобретение относится к области телекоммуникации и может быть использовано в декаметровых системах радиосвязи при высокоскоростной передаче дискретных сообщений методом фазовой манипуляции в условиях частого изменения условий связи, например, при частой смене лучей в многолучевом канале связи...
Тип: Изобретение
Номер охранного документа: 0002696478
Дата охранного документа: 02.08.2019
Showing 1-2 of 2 items.
19.01.2018
№218.016.06b5

Способ селективного определения отходящей линии с однофазным замыканием на землю в распределительных сетях напряжением 6-35 кв

Использование: в области электротехники. Технический результат - достоверное определение поврежденной линии среди других линий сети, позволяющее создать селективную защиту электрических сетей от однофазного замыкания на землю в распределительных сетях напряжением 6-35 кВ с изолированной или...
Тип: Изобретение
Номер охранного документа: 0002631121
Дата охранного документа: 19.09.2017
04.04.2018
№218.016.2f91

Способ настройки компенсации емкостных токов замыкания на землю в электрических сетях

Использование: в области электротехники. Технический результат – повышение точности настройки на любой заданный режим компенсации при любых высокочастотных помехах и искажениях. Согласно способу для определения параметров контура нулевой последовательности сети используется свободная...
Тип: Изобретение
Номер охранного документа: 0002644582
Дата охранного документа: 13.02.2018
+ добавить свой РИД