×
10.05.2018
218.016.3a83

Результат интеллектуальной деятельности: Способ измерения электрической емкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости основан на регистрации времени заряда t измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе С заранее принятого порогового значения напряжения U. Заменив измеряемый конденсатор С образцовым конденсатором С с известной емкостью, измеряют время заряда образцового конденсатора t, не меняя при этом значения сопротивления резистора R, напряжения зарядного источника Е и заранее принятого порогового значения напряжения Uна конденсаторе. Измеряемую емкость вычисляют по формуле: где С - емкость образцового конденсатора; t - время заряда конденсатора с измеряемой емкостью С до заранее принятого порогового значения напряжения на его обкладках; t - время заряда конденсатора С до заранее принятого порогового значения напряжения на его обкладках. Технический результат заключается в повышении точности измерения электрической емкости. 1 табл., 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.).

Уровень техники

Известно много способов измерения электрической емкости, среди которых можно отметить:

- способы, использующие резонансные свойства колебательного контура, содержащего катушку индуктивности и конденсатор с измеряемой емкостью СХ (Полулях К.С. Резонансные методы измерений. - М.: Энергия, 1980. - 120 с.);

- способы измерения параметров RC-генератора, содержащего во времязадающей цепи измеряемый конденсатор СХ (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - 624 с.);

- мостовые методы, основанные на сравнении измеряемой емкости с образцовой (Шарапов В.М. Емкостные датчики. В.М. Шарапов, И.Г. Минаев и др. Под ред. В.М. Шарапова. - Черкассы: Брама-Украина, 2010. - 152 с.).

Недостаток перечисленных способов заключается в необходимости использования и обработки высокочастотных сигналов, что усложняет их техническую реализацию.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятым авторами за прототип является известный способ измерения электрической емкости на постоянном токе, основанный на измерении параметров переходного процесса в пассивном линейном четырехполюснике, содержащем конденсатор с измеряемой емкостью СХ и активное сопротивление R в цепи его зарядки от источника постоянного тока с напряжением Е (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - С. 165-166).

Известно, что переходная характеристика такого четырехполюсника, т.е. его реакция на ступенчатый входной сигнал Е, графически представленная изменением напряжения U(t) на конденсаторе, имеет вид экспоненты

где: U(t) - мгновенное значение напряжения на конденсаторе с измеряемой емкостью СХ; t - время отсчета с момента поступления ступенчатого сигнала; Т - постоянная времени: Т=R⋅CX.

Известный способ измерения емкости основан на измерении мгновенного значения напряжения U(t) в соответствующий момент времени t, что позволяет, используя свойства экспоненты, определить постоянную времени Т и по ней значение измеряемой емкости

Измерение емкости указанным способом сопряжено с необходимостью стабилизации значений Е и R, т.к. их изменение под действием внешних факторов и старения приводит к появлению дополнительной погрешности измерения.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения Е источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью СХ на результат измерения, т.е. на повышение точности измерения электрической емкости.

Технический результат достигается тем, что на измеряемый конденсатор СХ через резистор R подают постоянное напряжение Е и измеряют время t1 заряда этого конденсатора с момента подачи Е до момента достижения на конденсаторе заранее принятого порогового значения U0; затем, не меняя значений сопротивления R и постоянного напряжения Е, заменяют измеряемый конденсатор на образцовый конденсатор с известной емкостью СО, заряжают его, фиксируют время t2 его зарядки до того же порогового значения U0 и рассчитывают измеряемую емкость СХ по формуле:

Краткое описание чертежей

На фиг. 1 изображена принципиальная схема реализации предлагаемого способа измерения емкости. На фиг. 2 - переходные характеристики, показывающие изменение мгновенных значений напряжений U1(t) и U2(t). На фиг. 3 - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа измерения электрической емкости.

Осуществление изобретения

Предлагаемый способ опирается на следующие предпосылки.

Как известно, при подключении RC-четырехполюсника к источнику постоянного тока напряжение на конденсаторе меняется по экспоненте. Так, если с помощью замыкающего ключа К1 (фиг. 1) в момент времени t=0 через резистор R подать постоянное напряжение Е на конденсатор с измеряемой емкостью СХ, то напряжение U1(t) на нем, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2):

с постоянной времени Т1=R⋅СХ.

Как только U1(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения Е. С помощью переключающего ключа К2 отключают измеряемый конденсатор СХ и замещают его образцовым конденсатором с известной емкостью СО. С помощью ключа К1 снова подают в момент времени t=0 через резистор R постоянное напряжение Е на конденсатор СО.

Напряжение U2(t) на конденсаторе СО начинает нарастать по экспоненте с постоянной времени Т2=RCO (фиг. 2):

Как только U2(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t2. В общем случае t1≠t2. Если, например, СОХ, то t2>t1 (как показано на фиг. 2). Так как моменты времени t1 и t2 фиксируют при достижении мгновенными значениями напряжений U1(t) и U2(t) одного и того же уровня U0, то можно записать:

С учетом (4) и (5) это условие (6) можно записать:

Из (7) следует, что , т.е. t1T2=t2T1 или

Решая (8) относительно неизвестного значения СХ, получаем формулу для его расчета (3).

При выводе этой расчетной формулы (3) в выражении (7) в левой и правой части равенства произвели сокращение на Е, а в выражении (8) - сокращение на R. Такие математические действия с равенствами (7) и (8) возможны в предположении, что за короткое время необходимое для проведения измерения t1 и t2 эти параметры, т.е. Е и R, остаются неизменными.

Поэтому значения Е и R не вошли в расчетную формулу (3), что устраняет возможность появления дополнительной погрешности в случае изменения этих параметров.

Так же в расчетную формулу (3) не вошло и значение U0, определяющее моменты t1 и t2.

Следовательно, предлагаемый способ устраняет влияние изменения напряжения источника питания Е, сопротивления R в цепи заряда измеряемой емкости и порогового значения напряжения U0, определяющего моменты фиксации t1 и t2.

Кроме того, если при измерении t1 и t2 имела место мультипликативная составляющая систематической инструментальной погрешности, то она также не повлияет на результат измерения емкости по предлагаемому способу, т.к. войдет сомножителем в числитель и знаменатель расчетной формулы (3).

Кроме того, если значения СХ и СО соизмеримы и, соответственно, соизмеримы значения t1 и t2, то практически исчезнет влияние и аддитивной составляющей систематической погрешности, т.к. она войдет в числитель и знаменатель расчетной формулы (3) с одним и тем же знаком.

Если предлагаемый способ будет реализован на базе микроконтроллера, то интервал времени, необходимый для его осуществления, т.е. для измерения t1 и t2 и расчета СХ по (3), будет составлять доли секунды, что позволяет рассчитывать на постоянство Е, R и U0 в столь короткий интервал.

Необходимо отметить, что последовательность измерения t1 и t2 не влияет на результат расчета по формуле (3). Можно сначала с помощью ключа К2 соединить с резистором R конденсатор Со, подать ключом К1 постоянное напряжение Е через резистор R на этот конденсатор и при достижении U2(t) порогового значения U0 зафиксировать t2; отключит Е; ключом К2 отсоединить СО и подключить СХ; подать Е на СХ; при достижении U1(t) порогового значения U0 зафиксировать t1 и по формуле (3) определить значение измеряемой емкости СХ.

Заранее принятое пороговое значение U0, как и в известном способе, основанном на измерении параметров переходного процесса, должно быть меньше значения Е, и его обычно выбирают в пределах (0,3-0,7)Е.

Значение СО с целью повышения чувствительности предлагаемого способа, исходя из общеизвестных положений метрологии, следует брать соизмеримым с предполагаемым значением измеряемой емкости СХ, что обеспечивает измерения как t1, так и t2 в равноточных условиях. Исходя из этого, можно рекомендовать СО=(0,1…10)СХ.

Измерение интервалов времени t1 и t2 возможно с применением любых известных средств как в цифровом, так и аналоговом исполнении, имеющих порог чувствительности, позволяющий проводить измерение емкости в соответствующих пределах. Чем выше чувствительность, тем меньше значение СХ, доступное для измерения предлагаемым способом.

Проверка работоспособности предлагаемого способа проводилась на установке (фиг. 3), в которой измеритель напряжения 1 выполнен на базе аналогового компаратора на операционном усилителе, например типа К554СА3. В качестве измерителя времени установлен электронный цифровой секундомер 2, например типа СИ8 ОВЕН, с чувствительностью 10 мс и имеющий два входа: один вход 3 для запуска высоким напряжением; другой вход 4 для остановки счета в случае поступления низкого напряжения (менее 0,8 В для этого секундомера). Такой порог чувствительности позволяет проводить измерения электрической емкости примерно от 0,5 мкФ и выше в сторону увеличения.

При измерении t1 и t2 при срабатывании ключа К1 (фиг. 3) высокое напряжение от источника Е поступает на вход 3 секундомера 2, запуская его в работу. Компаратор 1 включен по схеме инвертора, т.к. опорное напряжение U0 подается на неинвертирующий вход компаратора, а измеряемое напряжение U1(t) (или U2(t)) поступает на инвертирующий вход компаратора. До тех пор пока U1(t)<U0 (или U2(t)<0), на выходе компаратора высокое напряжение, что обеспечивает работу секундомера. Как только U1(t) (или U2(t)) станет равным U0, на выходе компаратора напряжение станет низким, что остановит работу секундомера и позволит снять его показания.

Как видно из представленной таблицы, изменение U0 с 5 до 7,5 В (опыты №1 и №2), изменение Е с 10 до 20 В (опыты №2 и №3), изменение R с 102 до 152 кОм практически не повлияли на точность измерения, и относительная погрешность измерения электрической емкости с применением предложенного способа не превысила 2%.

Предлагаемый способ измерения емкости по сравнению с прототипом и другими известными способами обладает следующими преимуществами:

- устраняет влияние дестабилизирующих факторов, таких как изменение напряжения питания, изменение сопротивления в цепи зарядки конденсатора и изменение значения напряжения срабатывания измерителя временных интервалов на точность измерения;

- доступность технической реализации на базе общедоступных микроконтроллеров, автоматически выполняющих все необходимые операции по измерению емкости.


Способ измерения электрической емкости
Способ измерения электрической емкости
Способ измерения электрической емкости
Способ измерения электрической емкости
Источник поступления информации: Роспатент

Showing 61-70 of 125 items.
06.09.2019
№219.017.c804

Переносное автономное устройство генерации озона

Изобретение относится к области синтеза озона из атмосферного воздуха, т.е. к физическим методам его получения, в данном случае к электроразрядным генераторам. Переносное автономное устройство генерации озона, содержащее озоноустойчивый корпус, вентилятор, выключатель, распределительную...
Тип: Изобретение
Номер охранного документа: 0002699265
Дата охранного документа: 04.09.2019
02.10.2019
№219.017.cfd8

Способ моделирования внутриглазного инфекционного процесса

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для моделирования внутриглазного инфекционного процесса. Стерильную иглу вводят в переднюю камеру глаза и отбирают внутриглазную жидкость в объеме 0,1 мл. После этого иглу оставляют в глазу, шприц заменяют и...
Тип: Изобретение
Номер охранного документа: 0002700403
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d0c9

Измельчитель

Измельчитель относится к устройствам для переработки сыпучего продукта и может быть использован в пищевой промышленности или в кормопроизводстве. Измельчитель состоит из корпуса-статора и размещенных в его полости приводного ротора, приемной, дробильной, разгрузочной камер, а также соединенного...
Тип: Изобретение
Номер охранного документа: 0002700622
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.d12a

Линейный электродвигатель

Изобретение относится к области электротехники, в частности к линейным электродвигателям. Технический результат - повышение силы тяги и коэффициента полезного действия. Линейный электродвигатель содержит статор, состоящий из магнитного корпуса, в котором расположена намагничивающая катушка,...
Тип: Изобретение
Номер охранного документа: 0002700666
Дата охранного документа: 18.09.2019
15.10.2019
№219.017.d5c0

Дефлекторная стрельчатая лапа

Изобретение относится к сельскохозяйственному машиностроению, а именно к рабочим органам культиваторов. Дефлекторная стрельчатая лапа содержит стойку, стрельчатый лемех с углом крошения и установленный над ним дефлектор, выполненный с возможностью перемещения по стойке и поворота в вертикальной...
Тип: Изобретение
Номер охранного документа: 0002702770
Дата охранного документа: 11.10.2019
26.10.2019
№219.017.db47

Средство для лечения кур, больных маллофагозом

Изобретение относится к области ветеринарной медицины, в частности к средству для лечения кур, больных маллофагозом. Средство включает полисульфид калия, лимонную кислоту и воду дистиллированную. Все компоненты взяты в определённом соотношении. Использование изобретения позволит эффективно...
Тип: Изобретение
Номер охранного документа: 0002704271
Дата охранного документа: 25.10.2019
02.11.2019
№219.017.de11

Блок ограждения загона для содержания сельскохозяйственных животных

Изобретение относится к области сельского хозяйства и может быть использовано для содержания различных сельскохозяйственных животных. Блок ограждения загона для содержания сельскохозяйственных животных выполнен полым из гибкого воздухонепроницаемого материала (пневмоблок), снабжен ниппельным...
Тип: Изобретение
Номер охранного документа: 0002704851
Дата охранного документа: 31.10.2019
08.11.2019
№219.017.df0a

Способ повышения плодородия чернозема выщелоченного

Изобретение относится к области сельского хозяйства и мелиорации. В способе в чернозем выщелоченный вносят фосфогипс. Дополнительно вносят известняк-ракушечник, апатит и концентрат молибденовой руды. Причем внесение мелиорантов производят дробно. Половину дозы горных пород и концентрата...
Тип: Изобретение
Номер охранного документа: 0002705316
Дата охранного документа: 06.11.2019
08.11.2019
№219.017.df12

Линейный электродвигатель

Изобретение относится к электротехнике, к линейным шаговым электродвигателям для дискретного электропривода. Технический результат состоит в повышении кпд и силы тяги, улучшении массогабаритных показателей. Линейный электродвигатель состоит из верхнего намагничивающего полюса 1, содержащего...
Тип: Изобретение
Номер охранного документа: 0002705205
Дата охранного документа: 06.11.2019
14.11.2019
№219.017.e18d

Электромагнитное реле для переключения аккумуляторных батарей с параллельной на попарно-параллельную зарядку

Изобретение относится к области электротехники, а именно к электромагнитному реле для переключения аккумуляторных батарей, работающих на зарядку от индивидуальной ветроэнергетической установки, с последующим преобразованием накопленной энергии с помощью инвертора в электрический ток нужных...
Тип: Изобретение
Номер охранного документа: 0002705796
Дата охранного документа: 12.11.2019
Showing 1-6 of 6 items.
13.01.2017
№217.015.7d8f

Рециркулятор вентилируемого воздуха

Изобретение относится к области санитарной гигиены и предназначено для обеззараживания воздуха в зданиях. Рециркулятор вентилируемого воздуха содержит воздушный фильтр (3), соединенный с впускным отверстием для воздуха, вентилятор (2), камеру (4) с ультрафиолетовыми лампами (5) и датчик...
Тип: Изобретение
Номер охранного документа: 0002600792
Дата охранного документа: 27.10.2016
04.04.2018
№218.016.300d

Способ измерения электрической емкости

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002645130
Дата охранного документа: 15.02.2018
06.07.2018
№218.016.6cd8

Способ измерения электрической емкости

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002660283
Дата охранного документа: 05.07.2018
17.08.2018
№218.016.7c6e

Беспроводная система биодиагностики ксилемного потока растений

Изобретение относится к области растениеводства, а также систем и аппаратуры передачи данных и предназначена для неразрушающей биодиагностики ксилемного потока травянистых растений с использованием беспроводной передачи данных. Система содержит датчик измерения ксилемного потока, закрепленный...
Тип: Изобретение
Номер охранного документа: 0002663997
Дата охранного документа: 14.08.2018
11.07.2019
№219.017.b2c4

Способ многоуровневого комплексного контроля технического состояния радиоэлектронных систем

Предложенное изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния радиоэлектронных систем (РЭС). Сущность предлагаемого способа многоуровневого комплексного контроля технического состояния РЭС состоит в...
Тип: Изобретение
Номер охранного документа: 0002694158
Дата охранного документа: 09.07.2019
20.04.2023
№223.018.4b36

Способ и устройство синхронизации системы управления преобразователями напряжения

Изобретение относится к системам управления силовыми преобразовательными устройствами и может быть использовано как устройство синхронизации в трехфазных управляемых мостовых выпрямителях, а также для синхронизации в цифровых и аналоговых системах управления вентильными преобразователями....
Тип: Изобретение
Номер охранного документа: 0002772321
Дата охранного документа: 18.05.2022
+ добавить свой РИД