×
10.05.2018
218.016.39f9

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002647186
Дата охранного документа
14.03.2018
Аннотация: Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают вертикально отрезок длинной линии, возбуждают электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, возбуждают электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых волн и осуществляют совместное функциональное преобразование ƒ и Δϕ. Измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина - разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие среды к его значению при наличии этой среды в емкости, и единицей. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения положения границ раздела между компонентами трехкомпонентной среды, находящейся в какой-либо емкости, одна компонента над другой, и образующих плоские границы раздела, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью.

Известны способы и устройства для измерения положения границ раздела между компонентами многокомпонентной, в частности трехкомпонентной, среды, компоненты которой расположены в содержащей среду емкости вертикально друг над другом, радиотехническими средствами с применением отрезков длинной линии (US №3474337 А, 21.10.1969; US №3812422 А, 21.05.1974). В этих способах измерения о положении границ раздела судят по времени, затраченному электромагнитными видеосигналами на распространение вдоль отрезка длинной линии, расположенного вертикально в емкости с контролируемой многокомпонентной средой, до неоднородностей - скачков волнового (характеристического) сопротивления на границах раздела соответствующих компонент среды, и отражение от них.

Известен также способ измерения положения границ раздела между компонентами многокомпонентной среды (US №3832900 А, 03.09.1974). Согласно этому способу отрезок длинной линии располагают вертикально в емкости с контролируемой средой, обеспечивают с помощью импульсного генератора распространение видеоимпульсов в отрезке длинной линии, принимают отраженные от границ раздела между компонентами среды видеоимпульсы, обеспечивают выделение соответствующих отраженных видеоимпульсов и судят о положении границ раздела по времени, затраченному видеоимпульсами их на распространение до соответствующих границ раздела и отражение от них. Данный способ измерения, несмотря на применение для его реализации всего одного отрезка длинной линии, обладает рядом существенных недостатков. Процесс измерения здесь достаточно сложен, поскольку реализация способа предполагает наличие громоздкой и сложной вторичной аппаратуры, предназначенной для приема отраженных от границ раздела видеосигналов, выделение каждого из них, соответствующего определенной границе раздела, и дальнейшего функционального преобразования для получения интересующей информации в удобной для регистрации форме (см. фиг. 2 в описании данного патента). При этом процесс измерения может быть существенно затруднен вследствие возможной малости амплитуд сигналов, отраженных от второй (и последующих) границ раздела и ослабленных из-за переотражений на границах раздела вышележащих компонент среды. Этот способ не характеризуется высокой точностью измерения. При сближении границ раздела имеет место взаимное влияние информативных отраженных видеосигналов, приводящее к искажению формы импульсов и, следовательно, к снижению точности измерения.

Известно также техническое решение, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (SU №1744502, 30.06.1992). Здесь для определения уровня вещества в емкости размещают в ней вертикально отрезок длинной линии, возбуждают в нем электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, дополнительно возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ согласно соотношению, приводимому в описании к этому техническому решению и позволяющему определить уровень вещества независимо от диэлектрической проницаемости вещества. Недостатком этого способа является его ограниченные функциональные возможности и область применения. Приводимое в указанном описании соотношение применимо лишь к измерению уровня вещества и не позволяет определять положение границ раздела между компонентами при наличии большего числа, чем одно, границ раздела сред.

Техническим результатом настоящего изобретения является расширение функциональных возможностей способа.

Технический результат достигается тем, что в предлагаемом способе измерения положения границ раздела между компонентами трехкомпонентной среды в емкости, одна компонента над другой, образующими плоские горизонтальные границы раздела, при котором в емкости с контролируемой трехкомпонентной средой размещают вертикально отрезок длинной линии, заполняемый компонентами среды в соответствии с их расположением в емкости, возбуждают в отрезке длинной линии электромагнитные колебания на его резонансной частоте ƒ осуществляют ее измерение, дополнительно возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ, и положение нижерасположенной и вышерасположенной границы раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии контролируемой среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина пропорциональна разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие контролируемой среды к его значению при наличии этой среды в емкости, и единицей.

Предлагаемый способ поясняется чертежами на фиг. 1 и 2, где приведены схемы устройств для реализации способа.

На фиг. 1 приведена схема устройства на основе одного отрезка длинной линии.

На фиг. 2 приведена схема устройства на основе двух отрезков длинной линии.

Здесь показаны компоненты 1, 2 и 3, отрезок длинной линии 4, индуктивное сопротивление 5, коммутатор 6, электронные блоки 7 и 8, функциональный преобразователь 9, регистратор 10, отрезок длинной линии 11, электронные блоки 12 и 13.

Способ реализуется следующим образом.

Для осуществления способа измерения положения границ раздела между компонентами трехкомпонентной среды в емкости здесь используют один отрезок длинной линии или два отрезка длинной линии. В качестве информативных сигналов используют два различных информативных параметра - это, во-первых, резонансная частота ƒ электромагнитных колебаний отрезка длинной линии и, во-вторых, фазовый сдвиг Δϕ возбуждаемых в том же или другом отрезке длинной линии электромагнитных волн на фиксированной частоте и принимаемых отраженных электромагнитных волн. Комбинация этих двух зависимостей от положения контролируемых границ раздела, каждая из которых выражается соответствующим уравнением, позволяет после решения системы таких уравнений получить требуемую информацию о координатах границ раздела между компонентами трехкомпонентной среды.

Рассмотрим, как следует для этого совместно преобразовать в электронном блоке устройства, реализующего данный способ, резонансную частоту ƒ электромагнитных колебаний отрезка длинной линии и фазовый сдвиг Δϕ возбуждаемых в отрезке длинной линии электромагнитных волн на фиксированной частоте и принимаемых отраженных электромагнитных волн. Для этого будем считать, что содержащиеся в емкости компоненты 1, 2 и 3 трехкомпонентной среды являются диэлектрическими средами, характеризуемыми величинами относительных диэлектрических проницаемостей ε1, ε2 и ε3, соответственно, нижележащей, промежуточной и верхней компонент среды (фиг. 1). На фиг. 1 также изображены отрезок длинной линии 4 длиной и координаты z1 и z2 границ раздела, считая от нижнего конца отрезка длинной линии; считается, что нижний конец отрезка длинной линии совмещен с дном емкости.

Для резонансной частоты ƒ электромагнитных колебаний основного типа ТЕМ отрезка однородной длинной линии имеем в данном случае следующее выражение (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 50-59) с учетом специфики рассматриваемой здесь задачи:

где ƒ0 - начальное (при отсутствии в емкости всех трех компонент среды, образующих границы раздела, то есть в отрезке длинной линии с воздушным заполнением) значение резонансной частоты ƒ;

U(ξ) - напряжение в точке с координатой ξ отрезка линии, возбуждаемого на резонансной частоте ƒ; - длина отрезка длинной линии.

Для фазового сдвига возбуждаемой на фиксированной частоте F электромагнитной волны и волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, в данном случае - при наличии в емкости трехкомпонентной среды с двумя границами раздела - будем иметь (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):

где z1 и z2 - координаты границ раздела между компонентами трехкомпонентной среды, отсчитываемые от нижнего конца отрезка длинной линии, где координата z=0; Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце оконечного горизонтального участка отрезка длинной линии.

Фазовый сдвиг Δϕ0 обусловлен отражением от нагрузки на конце отрезка длинной линии и имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π; для разомкнутого на конце отрезка длинной линии имеем Δϕ0=0. Здесь ХH - реактивное нагрузочное сопротивление, W - волновое (характеристическое) сопротивление отрезка длинной линии.

Соотношения (1) и (2) будем рассматривать как систему уравнений относительно неизвестных z1 и z2. Величина U(ξ) в (1) зависит от конструктивных особенностей отрезка длинной линии, от нагрузочных элементов и может быть выбрана желательным образом. С точки зрения простоты функции в (1) и целесообразности наиболее просто решить систему уравнений (1) и (2) функцию U(ξ) можно сделать постоянной величиной: U(ξ)=const, что соответствует равномерному характеру распределения энергии электромагнитного поля вдоль отрезка длинной линии. Такое распределение можно создать, например, сделав отрезок длинной линии 4 разомкнутым на нижнем конце и подключив к его входу индуктивное сопротивление 5 достаточно большой величины. В этом случае, при проведении измерений фазового сдвига Δϕ, имеем: Δϕ0=0.

С учетом сказанного соотношение (1) принимает в этом случае следующий вид:

а соотношение (2) - следующий вид:

Уравнения (3) и (4) после преобразований можно записать, соответственно, так:

В формуле (6) - начальное (при отсутствии в емкости всех трех компонент среды, образующих границы раздела, то есть в отрезке длинной линии с воздушным заполнением) значение фазового сдвига Δϕ.

Рассматривая уравнения (5) и (6) как систему уравнений относительно z1 и z2 и решая ее, получим

Эти решения можно записать также так:

В этих формулах введены следующие обозначения для констант k1, k2, k3, k4, m, n и Δ - величин, зависящих от значений диэлектрической проницаемости компонент среды, считающихся известными (справочными значениями или значениями, измеренными перед началом измерения z1 и z2:

Таким образом, измерив резонансную частоту ƒ электромагнитных колебаний основного типа ТЕМ отрезка длинной линии и фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн фиксированной частоты и преобразовав эти измеренные величины в электронном блоке устройства, реализующего данный способ, согласно соотношениям (9) и (10) получим в явном виде информацию о координатах z1 и z2 границ раздела компонент трехкомпонентной среды. Как видно из (9) и (10), эта информация получается в линейном виде, что практически является важным и устраняет необходимость применения специальных линеаризаторов выходных характеристик.

В наиболее часто встречающейся задаче самая верхняя компонента трехкомпонентной среды является воздухом. При этом в вышеприведенных формулах следует записать ε3=1. Тогда соотношения (7) и (8) записываются, соответственно, так:

Эти решения можно записать также так:

и, соответственно, в формулах (13) и (14) константы имеют следующие значения:

Поскольку, как показывает опыт, измерить резонансную частоту ƒ и фазовый сдвиг Δϕ можно с высокой точностью, то также будем с высокой точностью получать информацию о координатах z1 и z2. При этом два режима функционирования отрезка длинной линии, а именно режим возбуждения в нем электромагнитных колебаний и измерения резонансной частоты ƒ и режим распространения в нем электромагнитных волн фиксированной частоты F, приема отраженных волн и измерения фазового сдвига Δϕ возбуждаемых и принимаемых электромагнитных волн, являются независимыми.

На фиг. 1 схематично изображена функциональная схема устройства для реализации данного способа, реализуемого на основе одного отрезка длинной линии. Здесь в емкости, содержащей трехкомпонентную среду с компонентами 1, 2 и 3, размещен вертикально отрезок длинной, в частности коаксиальной, длинной линии 4. Для обеспечения равномерного распределения энергии электромагнитного поля вдоль отрезка длинной линии 4 он выполнен разомкнутым на нижнем конце, а к его входу подключено индуктивное сопротивление 5 достаточно большой величины.

В данном устройстве производят два такта измерений. В первом такте измерений возбуждение электромагнитных колебаний в отрезке длинной линии 4, расположенном в емкости с трехкомпонентной средой, производят через коммутатор 6 с помощью электронного блока 7, подключенного к верхнему концу отрезка длинной линии 4. Этот электронный блок 7 предназначен также для измерения резонансной частоты ƒ электромагнитных колебаний отрезка длинной линии. Во втором такте измерений другой электронный блок 8 обеспечивает возбуждение в отрезке длинной линии 4 электромагнитных волн фиксированной частоты F и измерение фазового сдвига Δϕ возбуждаемой и принимаемой волн (принимаемая волна отражается от нагрузки на конце оконечного горизонтального участка отрезка длинной линии). Через коммутатор 6 осуществляют связь электронных блоков 7 и 8 с отрезком длинной линии 4, обеспечивая попеременное существование в отрезке длинной линии 4 как режима колебаний в первом такте измерений, так и режима распространения и интерференции падающих и отраженных волн во втором такте измерений. Значения резонансной частоты ƒ и фазового сдвига Δϕ, измеряемые с помощью, соответственно, электронных блоков 7 и 8, поступают в функциональный преобразователь 9. В нем осуществляют совместное преобразование ƒ и Δϕ согласно вышеприведенным соотношениям (9) и (10). Результат совместного преобразования ƒ и Δϕ, несущий информацию о координатах z1 и z2 границ раздела компонент трехкомпонентной среды в емкости и получаемый согласно соотношениям (9) и (10) в функциональном преобразователе 9, поступает на индикатор 10.

На фиг. 2 схематично изображена функциональная схема другого устройства для реализации данного способа, реализуемого на основе двух отрезков длинной линии. Здесь в емкости, содержащей трехкомпонентную среду с компонентами 1, 2 и 3, размещены вертикально два независимых идентичных отрезка длинной линии 4 и 11, к которым подсоединены электронные блоки соответственно 12 и 13. В отрезке длинной линии 4 с помощью электронного блока 12 производят возбуждение электромагнитных колебаний и измерение резонансной частоты ƒ электромагнитных колебаний отрезка длинной линии 4. Для обеспечения равномерного распределения энергии электромагнитного поля вдоль отрезка длинной линии 4 к его нижнему концу подключено индуктивное сопротивление 5 достаточно большой величины. В отрезке длинной линии 11, выполненным разомкнутым на нижнем конце, с помощью электронного блока 13 производят возбуждение электромагнитных волн фиксированной частоты F и измерение фазового сдвига Δϕ возбуждаемой и принимаемой волн. В схеме данного устройства отсутствует коммутатор, выходы электронных блоков 12 и 13 подсоединены к входам функционального преобразователя 9. Значения резонансной частоты ƒ и фазового сдвига Δϕ, измеряемые с помощью соответственно электронных блоков 12 и 13, поступают в данном устройстве в функциональный преобразователь 9 одновременно. Результат совместного преобразования ƒ и Δϕ, несущий информацию о координатах z1 и z2 границ раздела компонент среды и получаемый согласно соотношениям (9) и (10) в функциональном преобразователе 9, поступает на индикатор 10.

Выше было проведено рассмотрение данного способа при наличии в емкости среды, все компоненты которой являются диэлектриками. Однако данный способ применим без какого-либо изменения его сущности и для сред с компонентами, имеющими произвольные электрофизические параметры (диэлектрическую проницаемость, электропроводность). Для контроля таких сред достаточно покрыть по меньшей мере один из проводников отрезка длинной линии диэлектрической оболочкой соответствующих толщины и материала, при которых как амплитуда отраженных видеосигналов, так и добротность отрезка длинной линии как резонатора имеют достаточную для регистрации величины (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 125-131). Диэлектрические проницаемости ε1, ε2 и ε3 компонент среды в приведенных выше соотношениях следует заменить их эффективными значениями εэфф1, εэфф2 и εэфф3 двухслойных диэлектриков (контролируемой компоненты и диэлектрической оболочки проводника отрезка длинной линии), соответственно, определяемыми совокупностью электрофизических параметров контролируемой среды и параметрами отрезка длинной линии.

При контроле трехкомпонентных сред, у которых верхняя среда есть воздух, а хотя бы одна из остальных компонент не является хорошим диэлектриком, следует использовать, как это отмечено выше, отрезок длинной линии с диэлектрическим покрытием по меньшей мере одного из его проводников, контактирующих со средой. При этом в соотношениях (11), (12), (13) и (14) следует вместо ε1 и ε2 компонент среды использовать значения εэфф1 и εэфф2. В этом случае возможно измерение положения границ раздела воздуха и нижерасположенных компонент с произвольными электрофизическими параметрами.

Таким образом, данный способ позволяет определять положение границ раздела между компонентами трехкомпонентной среды в емкости. Этот способ достаточно прост в реализации, которая осуществима как на основе двух отрезков длинной линии, так и одного отрезка длинной линии.

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости, одна компонента над другой, образующими плоские горизонтальные границы раздела, при котором в емкости с контролируемой трехкомпонентной средой размещают вертикально отрезок длинной линии, заполняемый компонентами среды в соответствии с их расположением в емкости, возбуждают в отрезке длинной линии электромагнитные колебания на его резонансной частоте ƒ, осуществляют ее измерение, дополнительно возбуждают в отрезке длинной линии электромагнитные волны на фиксированной частоте, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и Δϕ, отличающийся тем, что измерение Δϕ производят в том же или другом, идентичном ему, отрезке длинной линии с равномерным вдоль него распределением энергии электрического поля при измерении ƒ и положение границ раздела определяют по разности величин, одна из которых пропорциональна, соответственно, разности между отношением величины, пропорциональной значению Δϕ при наличии контролируемой среды в емкости к его значению в отсутствие этой среды, и единицей, а другая величина пропорциональна разности между величиной, пропорциональной квадрату отношения значения ƒ в отсутствие контролируемой среды к его значению при наличии этой среды в емкости, и единицей.
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦ РАЗДЕЛА МЕЖДУ КОМПОНЕНТАМИ ТРЕХКОМПОНЕНТНОЙ СРЕДЫ В ЕМКОСТИ
Источник поступления информации: Роспатент

Showing 101-110 of 276 items.
27.04.2016
№216.015.37c8

Способ извлечения пресной воды из атмосферного воздуха

Изобретение относится к области сборников атмосферной влаги и может быть использовано для получения пресной воды непосредственно из воздуха. Накапливают воду в емкости (1), выполненной из легкого материала в виде поверхности вращения. Емкость (1) поднимают вверх с помощью аэростата (19)....
Тип: Изобретение
Номер охранного документа: 0002582807
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37ef

Способ определения расходной характеристики гидравлического тракта и устройство для его осуществления

Группа изобретений относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов...
Тип: Изобретение
Номер охранного документа: 0002582486
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3801

Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и...
Тип: Изобретение
Номер охранного документа: 0002582487
Дата охранного документа: 27.04.2016
27.05.2016
№216.015.42c1

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и...
Тип: Изобретение
Номер охранного документа: 0002585320
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46ea

Системная сеть передачи сообщений многомерного тора с хордовыми связями

Изобретение относится к вычислительной технике, в частности к построению системных сетей для суперкомпьютеров в виде многомерных торов. Технический результат изобретения заключается в возможности существенного уменьшения времени доставки сообщений за счет сокращения диаметра сети (расстояния...
Тип: Изобретение
Номер охранного документа: 0002586835
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5348

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в...
Тип: Изобретение
Номер охранного документа: 0002594176
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53e0

Струйно-оптический триггер с раздельными входами и с постоянной памятью

Устройство относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в оптический, а затем в электрический. Струйно-оптический триггер содержит источник и приемник светового потока, проходящего через щелевой канал. В канале располагается вдоль него...
Тип: Изобретение
Номер охранного документа: 0002593934
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.655f

Свч-устройство для защиты кровли от наледей и сосулек

Изобретение относится к области строительства, в частности к устройствам для защиты кровли от наледей и сосулек. Техническим результатом заявляемого технического решения является повышение работоспособности устройства и уменьшение потери СВЧ-мощности при подогреве края кровли с наледями и...
Тип: Изобретение
Номер охранного документа: 0002592312
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6585

Устройство для извлечения пресной воды из атмосферного воздуха

Устройство для извлечения пресной воды из атмосферного воздуха содержит емкость для сбора влаги, выполненную из легкого материала (полипропилена) в виде поверхности вращения, аэростат, поднимающий емкость. Емкость для сбора влаги выполнена из нескольких последовательно расположенных друг над...
Тип: Изобретение
Номер охранного документа: 0002592116
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.676e

Струйно-оптический преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в электрический. Устройство преобразования газоструйного сигнала в оптический содержит источник и приемник светового потока, проходящего через щелевой канал, в котором располагается...
Тип: Изобретение
Номер охранного документа: 0002591876
Дата охранного документа: 20.07.2016
Showing 81-86 of 86 items.
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД