×
10.05.2018
218.016.3971

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ОКСИНИТРИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16

Изобретение относится к области порошковой металлургии, в частности получению порошков для создания высокопрочной прозрачной керамики на основу оксинитрида алюминия (ОНА). Уникальное сочетание оптических, диэлектрических и механических свойств такой керамики представляет значительный интерес к ее использованию в различных технических приложениях.

К настоящему времени для получения порошков ОНА используются преимущественно два подхода - твердофазная реакция оксида алюминия с нитридом алюминия и карботермическое восстановление-азотирование оксида алюминия [Corbin N.D. "AluminumOxynitrideSpinel: AReview." Journal of the European Ceramic Society, vol. 5, pp. 143-154,1989; Xidong W., Fuming W., Wenchao L. Synthesis, microstructures and properties of γ-aluminum oxynitride. Materials Science and Engineering: A. 2003. v. 342. №1-2. pp. 245-250; Грибченкова Н.А., Береснев Э.Н., Сморчков К.Г. и др. Синтез и термические свойства "АЛОНА". Журнал неорганической химии. 2015. т. 60. №9. с. 1247]. Указанные подходы реализуются с использованием различных методов нагрева, условий проведения процессов и подготовки используемых реагентов.

Твердофазная реакция взаимодействия нитрида и оксида алюминия проводится при температуре выше 1700°C в течение нескольких часов, что определяет основные недостатки этого подхода - большое время процесса, высокие затраты энергии и использование дорогостоящего сырья - нитрида алюминия [например, патент США №5688730, 1997 г.].

Процесс карботермического восстановления-азотирования оксида алюминия также проводится при высоких температурах 1650-1850°C [например, патент США №8211356, 2012 г]. К недостаткам этого подхода также относятся большое время процесса и высокие затраты энергии, кроме того, имеются технические трудности получения целевого продукта заданного состава, не содержащего примесей.

Наиболее близким к заявляемому изобретению является процесс получения порошка ОНА, представленный в патенте [Patent US 6955798 В2, 2005]. Способ предусматривает использование исходных порошков алюминия и гамма-формы оксида алюминия, которые подвергаются размолу в течение времени, обеспечивающего образование смеси твердого раствора азота в алюминии и оксида алюминия. Далее проводится нагрев смеси в азотсодержащем газе в течение времени и при температуре, достаточных для образования ОНА.

Недостатком процесса является низкая скорость - время размола составляет от 9 часов, кроме того, способ не позволяет получать порошки с высокой дисперсностью (ультра- и нанодисперсные).

Задача, на решение которой направлено настоящее изобретение, заключается в создании высокоинтенсивного способа получения порошка оксинитрида алюминия в виде нанодисперсного порошка.

Техническим результатом изобретения является получение целевого продукта - ОНА - в потоке термической плазмы в виде нанопорошка, состоящего из частиц с размерами менее 100 нм.

Технический результат достигается тем, что в способе получения нанопорошка оксинитрида алюминия тонкодисперсный порошок алюминия вводится в поток термической плазмы, в котором осуществляется взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,.16<O/Al<1,24.

Применение плазменного нагрева обеспечивает проведение синтеза ОНА в газовой фазе, что на порядки снижает характерное время процесса по сравнению с существующими способами получения ОНА в результате твердофазных реакций, а также обеспечивает получение целевого продукта в виде нанопорошка при конденсации из газовой фазы. Плазмообразующим газом может быть азот и его смеси с инертными газами, а также водородом. В составе плазмообразующего газа не допускается присутствие свободного или химически связанного кислорода. Алюминий используется в виде тонкодисперсного порошка для обеспечения его полного испарения в потоке плазмы. Аммиак вводится в высокотемпературный поток в количестве, значительно превышающем стехиометрически необходимое для образования ОНА, в то время как количество вводимого кислорода должно удовлетворять атомному соотношению элементов 1,16<O/Al<1,24. Граничные значения этого соотношения соответствуют области гомогенности ОНА(AlN)x(Al2O3)1-x, где 0,3<x<0,37. Наряду с аммиаком и кислородом в газовой смеси могут присутствовать азот, что позволяет использовать воздух как кислородсодержащий газ. Вводимая в высокотемпературный поток, содержащий пары алюминия, смесь газов должна обеспечивать не только протекание химических реакций формирования частиц ОНА при конденсации из газовой фазы, но и определять скорость снижения температуры потока и ее конечное значение и тем самым управлять размером получаемых частиц. Это может быть достигнуто изменением расхода вводимых газов при соблюдении указанных выше требуемых условий - избыток аммиака и диапазон допустимых значений соотношения O/Al. Выполненные к настоящему времени обширные исследования синтеза большого числа неорганических соединений по схеме ввода в плазменный поток холодных газов свидетельствуют о том, что при этом обеспечивается получение целевого продукта в виде нанопорошков с размером частиц менее 100 нм.

Отличительной особенностью и преимуществом предложенного способа является проведение синтеза ОНА из газовой фазы при взаимодействии паров алюминия, присутствующих в потоке термической плазмы, со смесью, в которой присутствуют аммиак и кислород, при соблюдении атомного соотношения элементов 1,16<O/Al<1,24. Способ обеспечивает протекание синтеза целевого продукта за времена порядка долей секунды и получение нанопорошка ОНА.

Предлагаемый способ реализуется следующим образом. В электроразрядном генераторе термической плазмы происходит нагрев подаваемых газов при их прохождении через дуговой, высокочастотный, сверхвысокочастотный или комбинированный разряд. В полученный поток термической плазмы вводится порошок алюминия с размером частиц не более 30 мкм, чтобы обеспечить полное испарение алюминия. Для подачи порошка используется транспортирующий газ, в качестве которого могут быть использованы азот, инертные газы или смеси указанных газов. На расстоянии от сечения ввода алюминия, обеспечивающем полное испарение частиц, в высокотемпературный поток вводится смесь аммиака и кислорода, причем количество аммиака значительно превышает стехиометрически необходимое по реакции образования ОНА, в то время как количество кислорода удовлетворяет атомному соотношению элементов 1,16<O/Al<1,24. Наряду с аммиаком и кислородом в газовой смеси могут присутствовать азот, что позволяет использовать воздух как кислородсодержащий газ, также в составе смеси могут присутствовать инертные газы. В результате химических реакций взаимодействия продуктов диссоциации аммиака, кислорода и паров алюминия при снижении температуры потока за счет вдува холодных газов происходит формирование наноразмерных частиц ОНА. Далее газодисперсный поток охлаждается в теплообменном устройстве и поступает на фильтр, где происходит выделение порошка из газового потока.

Реализация способа представлена следующим примером.

Пример

В поток термической плазмы, получаемой при нагреве в электродуговом плазменном генераторе смеси азота (97 объемных %) и водорода (3 объемных %) с суммарным расходом 1.5 м3/ч (норм. условия), вводится порошок алюминия с расходом 0.12 кг/ч с использованием в качестве транспортирующего газа азота с расходом 0.5 м3/ч (норм. условия). Среднемассовая энтальпия плазменной струи на выходе из плазменного генератора составляет 7.4 кВтч/нм3.

Ниже по потоку вводится смесь аммиака (25 объемных %), кислорода (1 объемный %) и азота (74 объемных %) с расходом 6 м3/ч (норм. условия). Атомное соотношение элементов O/Al для указанных расходов составляет 1,21, а соотношение Nаммиак/Alоставляет 15,7.

Полученный нанопорошок по результатам рентгенофазового анализа является γ-оксинитридом алюминия (рис. 1), удельная поверхность порошка составляет 71 м2/г, что соответствует нанодиапазону размеров частиц.

Способ получения нанопорошка оксинитрида алюминия, отличающийся тем, что тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ОКСИНИТРИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Showing 41-50 of 108 items.
25.08.2017
№217.015.b601

Способ получения листового композиционного материала системы титан-алюминий

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее...
Тип: Изобретение
Номер охранного документа: 0002614511
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bc5d

Способ получения карбидов элементов и композиций элемент-углерод

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002616058
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bf42

Высокопрочная низколегированная конструкционная сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных конструкционных сталей, используемых в оборудовании для холодной обработки давлением, в конструкциях летательных аппаратов, в транспортном, горнодобывающем и дорожно-строительном машиностроении, в деталях и...
Тип: Изобретение
Номер охранного документа: 0002617070
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bfaf

Литейный магниевый сплав с редкоземельными металлами

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно...
Тип: Изобретение
Номер охранного документа: 0002617072
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cc5c

Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и...
Тип: Изобретение
Номер охранного документа: 0002620549
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.d2ba

Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку...
Тип: Изобретение
Номер охранного документа: 0002621535
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d96c

Способ переработки лейкоксенового концентрата

Изобретение относится к переработке титановых концентратов с высоким содержанием кремния, например лейкоксеновых концентратов. Cпособ переработки лейкоксеновых концентратов включает плавление концентрата совместно с содой. При этом содержащийся в концентрате диоксид кремния взаимодействует с...
Тип: Изобретение
Номер охранного документа: 0002623564
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.daf0

Способ получения композиционного пористого биоактивного покрытия

Изобретение относится к способам напыления композиционных пористых биоактивных покрытий и может быть использовано для формирования покрытий на поверхности внутрикостных имплантатов, фильтрующих покрытий, носителей катализаторов. Способ получения композиционного пористого биоактивного покрытия...
Тип: Изобретение
Номер охранного документа: 0002623944
Дата охранного документа: 29.06.2017
Showing 11-18 of 18 items.
10.05.2018
№218.016.4a9b

Способ локального травления двуокиси кремния

Изобретение относится к микроэлектронике, способам контроля и анализа структуры интегральных схем, к процессам жидкостного травления. Сущность изобретения: выравнивание локальной неравномерности толщины слоя двуокиси кремния на поверхности кристалла ИС, образовавшейся в процессе...
Тип: Изобретение
Номер охранного документа: 0002651639
Дата охранного документа: 23.04.2018
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.f1b6

Плазменная установка для получения нанодисперсных порошков

Изобретение относится к области получения наноразмерных порошков (НП) элементов, неорганических соединений и композиций, в частности к плазменному оборудованию для производства НП различного назначения. Реактор имеет определенные соотношения геометрических размеров, связывающие выходной диаметр...
Тип: Изобретение
Номер охранного документа: 0002311225
Дата охранного документа: 27.11.2007
29.03.2019
№219.016.f711

Способ получения нанопорошков систем элемент-углерод

Изобретение может быть использовано в химической промышленности. Получение нанопорошков систем элемент-углерод из элементов и их соединений проводится в термической плазме смеси углеводорода с одним из компонентов или смесью компонентов из группы: водяной пар, диоксид углерода. В реагирующей...
Тип: Изобретение
Номер охранного документа: 0002434807
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.658e

Способ реактивного ионного травления слоя нитрида титана селективно к алюминию и двуокиси кремния

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структур интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к Al и SiO при реактивном ионном травлении его в плазме CF+O при соотношении...
Тип: Изобретение
Номер охранного документа: 0002392689
Дата охранного документа: 20.06.2010
29.05.2019
№219.017.690d

Способ получения суспензий наночастиц

Изобретение относится к области химической промышленности и металлургии и может применяться для получения суспензий наноразмерных частиц элементов и их соединений. Способ включает конденсацию из газовой фазы при охлаждении водой высокотемпературного потока, содержащего пары конденсируемого...
Тип: Изобретение
Номер охранного документа: 0002436659
Дата охранного документа: 20.12.2011
29.11.2019
№219.017.e7ff

Сферический порошок псевдосплава на основе вольфрама и способ его получения

Изобретение относится к сферическому порошку псевдосплава на основе вольфрама. Ведут гранулирование порошка наноразмерного композита, состоящего из металлических частиц с размерами менее 100 нм и полученного водородным восстановлением в термической плазме смеси порошков оксидов вольфрама с...
Тип: Изобретение
Номер охранного документа: 0002707455
Дата охранного документа: 26.11.2019
22.04.2023
№223.018.50e4

Способ очистки порошков титана и его сплавов от примеси кислорода

Изобретение относится к области порошковой металлургии, в частности к способам очистки порошков титана и его сплавов от примесей кислорода. Очистку порошков титана и его сплавов осуществляют путем взаимодействия с порошком магния или гидрида кальция в потоке термической плазмы инертных газов,...
Тип: Изобретение
Номер охранного документа: 0002794190
Дата охранного документа: 12.04.2023
+ добавить свой РИД