×
10.05.2018
218.016.3963

СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения оксида скандия (ScO) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. В способе получения оксида скандия согласно изобретению реэкстракцию скандия проводят раствором фтористоводородной кислоты, что позволяет уменьшить потери экстрагента и его переход в оксид скандия и тем самым получить чистый оксид скандия. При этом путем обработки щелочным агентом концентрата фторида скандия, полученного по данному способу, удается выделить осадок скандия с содержанием скандия в пересчете на оксид на уровне 85-95%, что позволяет при его дальнейшей оксалатной перечистке получить оксид скандия чистотой уже 99,9÷99,99%. Техническим результатом заявляемого изобретения является получение более чистого ScO при увеличении степени извлечения ScO. 6 ил., 6 пр.
Реферат Свернуть Развернуть

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия (Sc2O3) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов.

В США при экстракции урана раствором ДДФК (додециловый эфир фосфорной кислоты) в керосине в органическую фазу вместе с ураном из продуктивных растворов переводят скандий, торий, титан, которые после реэкстракции урана соляной кислотой остаются в органической фазе (Технология редкоземельных и рассеянных элементов под ред. К.А. Большакова, 1976 г. т. II, М., Высшая школа, с. 267-268). Двухступенчатой обработкой растворами плавиковой, затем серной кислоты скандий и торий выделяются в виде фторидов, после чего радиационно-опасный концентрат подвергают длительным и трудоемким операциям разделения и очистки.

К недостатку указанного способа получения Sc2O3 относится низкая селективная способность экстрагента ДДФК, необходимость применения многоступенчатой технологии разделения и очистки скандия от других элементов при наличии радиационной опасности процесса.

Известен способ получения Sc2O3 из сбросного раствора гидролизной кислоты производства пигментного диоксида титана сернокислотным способом (Фаворская Л.В., Кошулько Л.П., Преснецова В.А. Технология минерального сырья: Сб. статей. Вып. 2. Алма-Ата, Мингео Каз. ССР, 1975, С. 67-73). При реализации способа скандий выделяют с помощью экстракции раствором Ди2ЭГФК 0,4 моль/л в керосине и соотношении фаз O:В=1:100. Скандий реэкстрагируют твердым фтористым натрием (NaF). Содержание Sc2O3 в конечном продукте составило до 61%.

Недостатком данного способа является использование экстрагента Ди2ЭГФК, который, несмотря на то что имеет большую емкость по Sc, но обладает незначительной селективностью по Sc в присутствии таких элементов, как титан, цирконий, торий, РЗЭ, ванадий. В результате получается достаточно грязный Sc2O3. Кроме того, данный экстрагент при его использовании в технологии проявляет склонность к эмульгированию, что затрудняет его эффективное использование.

Известен способ получения Sc2O3 из концентрата скандия, выделенного при сернокислотном выщелачивании давидитовых концентратов (Allen R.J., Pullman B.J. // AMDEL Bull., 1968, №5, P. 52-64). Согласно способу скандий экстрагируют раствором Ди2ЭГФК 0,1 моль/л в керосине с добавлением 4% нонилового спирта для предотвращения образования эмульсии. В результате промывки насыщенного экстрагента 9 н серной кислотой (H2SO4) отделяют от примесей тория, РЗЭ и ванадия. После этого скандий реэкстрагируют раствором щелочи (NaOH) 2,5 моль/л. По этой схеме извлекают до 80% скандия; чистота Sc2O3 - 95,8%.

Недостатком данного способа является неудовлетворительная очистка Sc2O3 от таких примесей, как титан и цирконий. Кроме того, значительные потери скандия происходят при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия.

Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ получения оксида скандия из концентрата скандия (Weiwei Wang, Yoko Pranolo, Chu Yong Cheng Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA // Separation and Purification Technology 108 (2013) 96-102), включающий растворение концентрата скандия в серной кислоте (H2SO4) с концентрацией 50-200 г/дм3 с получением продуктивного раствора, выделение из продуктивного раствора циркония, экстракцию скандия из рафината на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ при соотношении Ди2ЭГФК:ТБФ=1:0,5, промывку насыщенного экстрагента раствором H2SO4=50-200 г/дм3 и перекиси водорода (Н2О2)=5-20 г/дм3, реэкстракцию скандия раствором NaOH, с получением осадка скандия и маточника реэкстракции, где маточник реэкстракции донасыщают по щелочному агенту и повторно направляют на реэкстракцию, а осадок скандия перерастворяют в кислоте с осаждением оксалата скандия, который прокаливается до оксида скандия.

Несмотря на такие эффективные технологические приемы, как: предварительная очистка от ионов циркония, использование смеси Ди2ЭГФК и ТБФ для понижения эмульгирования органической фазы, дополнительная очистка от ионов титана за счет введения в промывной сернокислый раствор перекиси водорода, к недостаткам данного способа следует отнести значительные потери скандия при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия, а также большой растворимости экстрагентов в щелочной среде.

Изобретение направлено на решение технической проблемы, связанной со значительными потерями скандия при реэкстракции раствором NaOH из-за неполного осаждения Sc в осадок скандия вследствие образования растворимых гидроксокомплексов скандия, а также большой растворимости экстрагентов в щелочной среде и попадания продуктов растворения в осадок скандия, что приводит к дальнейшему загрязнению оксида скандия

В основу изобретения положена задача, по созданию высокорентабельного технологического процесса получения Sc2O3 из концентрата скандия.

При этом техническим результатом заявляемого изобретения является получение более чистого Sc2O3 при увеличении степени извлечения Sc2O3.

Заявляемый технический результат достигается тем, что в способе получения оксида скандия из концентрата скандия согласно изобретению проводят растворение концентрата скандия в серной кислоте с получением продуктивного раствора, выделение из продуктивного раствора циркония, далее экстракцию скандия на экстрагенте, состоящем из смеси Ди2ЭГФК и ТБФ, промывку насыщенного экстрагента раствором серной кислоты и перекиси водорода, реэкстракцию скандия раствором NaOH, с получением осадка скандия и маточника реэкстракции, где маточник реэкстракции донасыщают по щелочному агенту и повторно направляют на реэкстракцию, а осадок скандия перерастворяют в кислоте с осаждением оксалата скандия, его дальнейшим прокаливанием и получением оксида скандия, отличающийся тем, что реэкстракцию скандия проводят раствором фтористоводородной кислоты 50-200 г/дм3 с получением раствора реэкстракции скандия, который обрабатывают кристаллическим щелочным агентом, причем в качестве кристаллического щелочного агента используют кальцинированную соду (Na2CO3) или поташ (К2СО3), при массовом соотношении раствор реэкстракции скандия: кристаллический щелочной агент=100:0,1÷10, образовавшуюся суспензию фильтруют с получением фильтрата, который насыщают по фтористоводородной кислоте и, повторно, направляют на операцию реэкстракции скандия и концентрата фторида скандия, который обрабатывают щелочным агентом, причем в качестве щелочного агента используют натриевую щелочь NaOH или калиевую щелочь КОН, с концентрацией 100-400 г/дм3 при температуре 50-90°С и соотношении концентрат фторида скандия:щелочной агент=1:5-20, фильтруют с получением фильтрата, который насыщают по щелочному агенту и, повторно, направляют на операцию обработки концентрата фторида скандия, при этом, поддерживают концентрацию ионов фтора в щелочном агенте не более 5 г/дм3, выводя часть щелочного агента на утилизацию, и осадка скандия, который направляют на получение оксида скандия.

Применение для реэкстракции фтористоводородной кислоты позволяет уменьшить потери скандия с экстрагентом, а также повысить чистоту оксида скандия за счет меньшего захвата фосфорных органических соединений.

Оптимальное массовое соотношение в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 определяется тем, что именно в этом интервале растворимость комплексных фторидов железа, титана и циркония имеет большее значение. Это позволяет отделиться от этих компонентов при осаждении концентрата фторида скандия.

Использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3 при температуре 50-90°С и соотношении концентрат фторида скандия:щелочной агент=1:5-20 позволяет в результате операции обработки, избирательно конвертировать концентрат фторида скандия в гидроксид скандия - осадок скандия. При этом элементы-примеси в виде комплексных фторидов не конвертируются в гидроксиды в данных условиях. При последующих операциях перерастворения осадка скандия в кислоте элементы-примеси в виде комплексных фторидов не растворяются. Тем самым удается и на этой операции частично очиститься от примесей.

Сущность изобретения поясняется фигурами, на которых изображено:

- фиг. 1 – таблица: степень реэкстракции скандия и растворимость экстрагентов в зависимости от типа реэкстрагирующего раствора по примеру 1,

- фиг. 2 – таблица: влияние массового соотношении раствор реэкстракции скандия: Na2CO3 на степень осаждения скандия и примесей по примеру 2,

- фиг. 3 – таблица: влияние концентрации щелочного агента на качество получаемого осадка скандия по примеру 3,

- фиг. 4 – таблица: влияние температуры на качество получаемого осадка скандия по примеру 4,

- фиг. 5 – таблица: влияние соотношения концентрат фторида скандия:щелочной агент на качество получаемого осадка скандия по примеру 5,

- фиг. 6 – таблица: сравнительные результаты состава оксида скандия, полученного с использованием заявляемого способа и прототипа по примеру 6.

Осуществление заявляемого способа подтверждается следующими примерами.

Пример 1. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом содержащим Ди2ЭГФК:ТБФ=1:0,5.

Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент делили на равные порции и реэкстрагировали фтористоводородной кислотой различной концентрации и раствором NaOH с концентрацией 100 г/дм3. Полученные маточники экстракции анализировали на содержание компонентов и на растворимость экстрагентов.

Пример 1 показывает влияние концентрации фтористоводородной кислоты на степень реэкстракции скандия. Из примера 1 видно, что использование фтористоводородной кислоты с концентрацией в интервале 50-200 г/дм3 позволяет наиболее полно проводить операцию реэкстракции. Вместе с тем растворимость экстрагентов в присутствии фтористоводородной кислоты более чем на два порядка ниже, чем при использовании при реэкстракции раствора NaOH.

Пример 2. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции скандия равными порциями вносили в мерные стаканы и при перемешивании, в каждый стакан, добавляли определенное количество кристаллического Na2CO3. В каждой порции полученную суспензию фильтровали. Фильтраты анализировали. По разности концентраций элементов в исходном растворе и полученных фильтратах рассчитывали степень осаждения исследуемых элементов.

Пример 2 демонстрирует влияние массового соотношения раствора реэкстракции скандия: Na2CO3 на степень осаждения скандия и сопутствующих примесей. Из данных примера 2 видно, что при использовании массового соотношения в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 удается эффективно осадить скандий из раствора реэкстракции и при этом эффективно отделиться от железа, титана и циркония.

Пример 3. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Полученный концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH при температуре 70°С и соотношении концентрат фторида скандия : щелочной агент=1:10. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.

Пример 3 позволяет оценить влияние концентрации щелочного агента на качество получаемого осадка скандия. Из данных примера 3 видно, что при использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3 удается эффективно перевести фторид скандия в гидроксид скандия - концентрат скандия. При этом использование раствора NaOH более 400 г/дм3 не приводит к улучшению качества получаемого концентрата скандия.

Пример 4. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок с фильтра - концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH 200 г/дм3 при соотношении концентрат фторида скандия щелочной агент=1:10 и различных температурах. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.

Пример 4 позволяет оценить влияние температуры на качество получаемого осадка скандия. Из данных примера 4 видно, что в интервале температуры 50-90°С удается эффективно перевести концентрат фторида скандия в гидроксид скандия - концентрат скандия. При этом использование температуры выше 90°С технологически не целесообразно. Проведение операции при комнатной температуре не позволяет полноценно перевести концентрат фторида скандия в гидроксид скандия - осадок скандия.

Пример 5. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 -20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок с фильтра - концентрат фторида скандия разделили на части. Каждую часть поместили в отдельный стакан и обработали раствором NaOH 200 г/дм3 при температуре 70°С и различном соотношении концентрат фторида скандия щелочной агент. Полученные суспензии отфильтровали, осадки проанализировали на содержание основных компонентов.

Пример 5 позволяет оценить влияние соотношения концентрат фторида скандия щелочной агент на качество получаемого осадка скандия. Из данных примера 5 видно, что при использовании соотношения концентрат фторида скандия щелочной агент 1:5-20 удается эффективно перевести фторид скандия в гидроксид скандия - концентрат скандия. При этом при более низком соотношении не удается полноценно перевести концентрат фторида скандия в гидроксид скандия - осадок скандия. При более высоком соотношении в осадок скандия начинают переходить элементы-примеси.

Пример 6. Навеску концентрата скандия, содержащего в пересчете на оксиды: Sc2O3 - 20%, TiO2 - 20%, ZrO2 - 2%, ThO2 - 40%, Fe2O3 - 18%, растворяли в серной кислоте с концентрацией 100 г/дм3 до концентрации скандия в полученном растворе 1 г/дм3. Из полученного раствора извлекали цирконий. Полученный продуктивный раствор приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией=10 г/дм3. Отмытый экстрагент реэкстрагировали фтористоводородной кислотой с концентрацией 100 г/дм3. Полученный раствор реэкстракции обработали кристаллическим Na2CO3 при массовом соотношении раствор реэкстракции скандия: Na2CO3=1000:5. Полученную суспензию отфильтровали. Осадок обработали раствором NaOH 200 г/дм3 при температуре 70°С и соотношении концентрат фторида скандия: щелочной агент=1:10. Полученную суспензию отфильтровали. Другую навеску концентрата скандия обработали согласно прототипу (использовали для выделения циркония 0.025 М раствор экстрагента Primene JMT в Shellsol D70; экстракцию скандия проводили экстрагентом, содержащим Ди2ЭГФК:ТБФ=1:0,5; реэкстракцию проводили раствором NaOH). Полученные осадки скандия в обоих случаях отфильтровывали, растворяли в кислоте, осаждали оксалаты скандия, оксалаты скандия прокаливали до оксидов. Полученные оксиды анализировали на содержание компонентов.

Пример 6 дает сравнительные результаты состава оксида скандия, полученного с использованием заявляемого способа и прототипа. Из данных примера 3 видно, что использование заявляемого способа позволяет получить более чистый концентрат скандия.

Таким образом, при использовании фтористоводородной кислоты с концентрацией в интервале 50-200 г/дм3, применении при осаждении концентрата фторида скандия качестве кристаллического щелочного агента в интервале раствор реэкстракции скандия: Na2CO3=1000:0,1÷10 и при использовании раствора (NaOH, КОН) в диапазоне 100÷400 г/дм3, температуре в интервале 50-90°С и при использовании соотношения концентрат фторида скандия : щелочной агент 1:5-20 для получения осадка скандия позволяет получить более чистый оксид скандия и минимизировать его потери.

Способ получения оксида скандия из концентрата скандия, включающий растворение концентрата скандия в серной кислоте с получением продуктивного раствора, выделение из продуктивного раствора циркония, экстракцию скандия на экстрагенте, состоящем из смеси ди-2-этилгексилфосфорной кислоты (Ди2ЭГФК) и трибутилфосфата (ТБФ), промывку насыщенного экстрагента раствором серной кислоты и перекиси водорода, реэкстракцию скандия, получение оксида скандия с использованием растворения в кислоте, осаждение оксалата скандия и его прокаливание, отличающийся тем, что реэкстракцию скандия проводят раствором фтористоводородной кислоты 50-200 г/дм с получением раствора реэкстракции скандия, который обрабатывают кристаллическим щелочным агентом, в качестве которого используют кальцинированную соду (NaCO) или поташ (KCO), при массовом соотношении раствор реэкстракции скандия : кристаллический щелочной агент = 100:0,1÷10, образовавшуюся суспензию фильтруют с получением фильтрата, который насыщают по фтористоводородной кислоте и, повторно, направляют на операцию реэкстракции скандия и концентрата фторида скандия, который обрабатывают щелочным агентом, в качестве которого используют натриевую щелочь NaOH или калиевую щелочь КОН, с концентрацией 100-400 г/дм при температуре 50-90°C и соотношении концентрат фторида скандия : щелочной агент = 1:5-20, фильтруют с получением осадка скандия и фильтрата, который насыщают по щелочному агенту и, повторно, направляют на операцию обработки концентрата фторида скандия, при этом концентрацию ионов фтора в щелочном агенте поддерживают не более 5 г/дм, выводят часть щелочного агента на утилизацию, а осадок скандия направляют на получение оксида скандия.
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КОНЦЕНТРАТА СКАНДИЯ
Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
26.08.2017
№217.015.d4b5

Способ переработки сбросных скандийсодержащих растворов уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана. В способе переработки сбросных скандийсодержащих растворов уранового производства согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002622201
Дата охранного документа: 13.06.2017
20.01.2018
№218.016.1d39

Способ получения концентрата урана из нитратно-сульфатных растворов

Изобретение относится к области гидрометаллургии и может быть использовано для получения уранового концентрата в технологии природного урана. Способ получения уранового концентрата из нитратно-сульфатного десорбата, образующегося в результате десорбции урана из насыщенного анионита...
Тип: Изобретение
Номер охранного документа: 0002640697
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
01.11.2019
№219.017.dc3c

Способ получения лигатуры "алюминий-скандий" (варианты)

Изобретение относится к металлургическим технологиям в области редких и цветных металлов и может быть использовано для получения лигатуры алюминия со скандием. Алюминотермическое восстановление фторида скандия осуществляют путем расплавления в температурном интервале 740-780°С шихты в виде...
Тип: Изобретение
Номер охранного документа: 0002704681
Дата охранного документа: 30.10.2019
Showing 1-10 of 36 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5d51

Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Изобретения относятся к гидрометаллургии и могут быть использованы для извлечения урана из продуктивных растворов и пульп, в частности для получения концентратов природного урана при сернокислотном подземном выщелачивании с использованием нитратно-сернокислотной десорбции анионита. Способ...
Тип: Изобретение
Номер охранного документа: 0002489510
Дата охранного документа: 10.08.2013
10.07.2014
№216.012.da14

Способ утилизации сбросных растворов в производстве тетрафторида урана

Изобретение относится к гидрометаллургии урана и может быть использовано для утилизации маточников, образующихся при получении тетрафторида урана из азотнокислых растворов с использованием процессов экстракции, реэкстракции и термообработки соединений урана, получаемых из реэкстрактов с...
Тип: Изобретение
Номер охранного документа: 0002521606
Дата охранного документа: 10.07.2014
20.01.2016
№216.013.a134

Способ выщелачивания урана из руд

Изобретение относится к гидрометаллургическим способам переработки руд и может быть использовано для извлечения урана из рудных материалов подземным (ПВ) выщелачиванием. Новым в способе является дополнительная обработка предварительно приготовленного с нитритом натрия выщелачивающего раствора...
Тип: Изобретение
Номер охранного документа: 0002572910
Дата охранного документа: 20.01.2016
13.01.2017
№217.015.8752

Способ извлечения скандия и редкоземельных элементов из красных шламов

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной...
Тип: Изобретение
Номер охранного документа: 0002603418
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8b81

Способ получения урановых концентратов из кислых растворов

Изобретение относится к области гидрометаллургии и может быть использовано для производства урановых концентратов в технологии природного урана и оборотного ядерного топлива. Способ получения урановых концентратов из кислых растворов после десорбции урана с анионита заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002604154
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ab6e

Способ извлечения скандия из скандийсодержащего продуктивного раствора

Изобретение относится к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана при его добыче методом подземного выщелачивания. Способ включает сорбцию скандия из скандийсодержащего раствора на твердом экстрагенте с...
Тип: Изобретение
Номер охранного документа: 0002612107
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.be4b

Установка для получения урановых концентратов из кислых растворов

Изобретение относится к гидрометаллургии. Установка содержит сборник уранового регенерата, каскад реакторов осаждения уранового концентрата для получения осадка уранового концентрата, коллектор с трубопроводами раздачи нейтрализующего реагента в реакторы осаждения уранового концентрата,...
Тип: Изобретение
Номер охранного документа: 0002616744
Дата охранного документа: 18.04.2017
+ добавить свой РИД