×
10.05.2018
218.016.395b

Результат интеллектуальной деятельности: Способ получения порошков тантала

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению порошка тантала. Способ включает активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа с использованием в качестве источника водорода насыщенного гидрида интерметаллического соединения LaNiCo, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка ТаН в две стадии. Сначала дегидрируемый порошок ТаН нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNiCo, затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNiCo. Обеспечивается получение порошка тантала с содержанием водорода менее 0,05 мас.%. 3 ил., 1 табл.

Изобретение относится к области порошковой металлургии и может быть использовано для получения высокочистых порошков тантала гидридным методом.

Гидридный способ получения порошков (ГСПП) основан на использовании водородного охрупчивания металлов, позволяющего измельчать их до требуемой степени дисперсности. ГСПП включает активацию компактного материала нагреванием в вакууме или в атмосфере водорода, гидрирование в процессе ступенчатого охлаждения в водороде, измельчение синтезированного гидрида механическим путем до требуемого гранулометрического состава и дегидрирование полученных порошков при нагревании и удалении выделяющегося газа с помощью вакуумных насосов или специальных сорбентов. В качестве таковых можно использовать материалы, способные обратимо поглощать Н2: некоторые гидридообразующие металлы (например, титан) или интерметаллические соединения (ИМС), что позволяет, во-первых, насыщать диспергируемый металл газом высокой степени чистоты, образующимся при термическом разложении гидридов, а во-вторых, осуществлять вышеописанный процесс ГСПП в замкнутом цикле по водороду. В этом случае гидриды титана или ИМС в насыщенном состоянии служат источниками высокочистого Н2, а в ненасыщенном - поглотителями, обеспечивающими сорбцию основного количества газа, выделяющегося из порошка при дегидрировании.

Известен способ получения порошков редких металлов гидрированием-дегидрированием компактных материалов с использованием водорода в замкнутом цикле. Данный способ включает технологические операции гидрирования, размола, классификации и дегидрирования. При этом чистый водород поступает в систему из насыщенного гидрида титана, а удаление водорода, выделяющегося при дегидрировании порошка, обеспечивается за счет поглощения этого газа ненасыщенным TiHx (Исследования и разработки ИХТРЭМС КНЦ РАН в области материаловедения для решения задач специальной техники / В.Т. Калинников, А.Г. Касиков, В.М. Орлов, Н.Н. Гришин, Б.М. Фрейдин // Химическая технология. 2009. Т. 10, №3. С. 177-182). Главный недостаток такого способа заключается в том, что из-за высоких температур образования и особенно разложения гидрида титана разогрев его до заданного температурного уровня требует много времени и больших затрат электроэнергии, что значительно удлиняет процессы гидрирования компактного металла, снижает их производительность и увеличивает стоимость продукта.

Известно использование интерметаллического соединения LaNi4Co при гидрировании ниобия водородом, выделяющимся при разложении гидрида этого ИМС. Слитки ниобия помещали в реторту, которую затем герметизировали, вакуумировали, заполняли водородом, выделяющимся из насыщенного гидрида ИМС LaNi4Co, нагревали в электропечи до (750±50)°C и делали выдержку при этой температуре в течение 4-5 ч. Начавшийся процесс гидрирования продолжали путем ступенчатого снижения температуры: сначала до (450±50)°C (с выдержкой на этом уровне около 5 ч), потом до 80-100°C (вместе с печью, на протяжении 20-30 ч), а после извлечения реторты из печи - до комнатной температуры (Разработка оксидно-полупроводниковых конденсаторов на основе ниобия / А.В. Елютин, Ю.Б. Патрикеев, Н.С. Воробьева // ГИРЕДМЕТ - 70 лет в металлургии редких металлов и полупроводников: юбилейный сборник. М.: ЦИНАО, 2001. С. 291-306). Продуктом этого технологического процесса был порошок гидрида ниобия, используемый для изготовления анодов оксидно-полупроводниковых конденсаторов (ОПК). Водород из него удаляли уже на стадии изготовления ОПК, поэтому на этапе получения порошка замкнутый цикл реализован не был.

При производстве порошков в замкнутом цикле недостатком данного способа является меньшая по сравнению с гидридом титана сорбционная активность ИМС LaNi4Co при абсолютном давлении ниже 0,1 МПа, которое необходимо для более полного дегидрирования порошка тантала. Поскольку равновесное давление образования гидрида LaNi4CoHx при температуре 20°C находится на уровне 0,12-0,14 МПа, то по мере поглощения водорода, выделяющегося из ТаНх, сорбент насыщается раньше, чем будет достигнуто требуемое потребителями остаточное содержание водорода в порошке тантала ([H]Ta).

Известен также способ получения порошков тантала в замкнутом цикле по водороду (технологическая схема представлена на рис. 1), включающий активацию слитка тантала нагреванием до 700-900°C в атмосфере водорода, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка тантала с использованием ненасыщенного гидрида титана. Активацию слитка тантала нагреванием ведут в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции водорода из насыщенного гидрида многокомпонентного интерметаллического соединения La1-yRyNi4Co (где R - редкоземельные металлы цериевой группы и/или мишметалл, 0<y≤1), что инициирует начало гидрирования слитка тантала водородом. Одновременно с активацией слитка тантала нагревают насыщенный гидрид титана до температуры его разложения с выделением водорода и при достижении избыточного давления 0,2-0,3 МПа продолжают начатое гидрирование слитка тантала водородом, выделяющимся при разложении гидрида титана. (Способ получения порошков тантала. Патент RU №2582414, МПК С22B 34/24, B22F 9/04, B22F 9/16, опубл. 27.04.2016.) Способ принят за прототип.

При реализации такого комбинированного варианта ГСПП с участием в технологических процессах двух сорбентов водорода достигается сокращение времени, необходимого для проведения операций гидрирования-дегидрирования. Также обеспечивается снижение потерь водорода и повышение безопасности процесса за счет использования возможности дополнительного поглощения излишнего количества выделяющегося водорода, что позволяет избежать резких скачков давления, которые могут возникнуть из-за инерционности печей и разницы в скоростях выделения водорода и поглощения его гидрируемым металлом. Однако в качестве базового сорбента здесь по-прежнему применяется титан, что требует больших затрат электроэнергии и негативно сказывается на стоимости продукта. Кроме того, как показала практика длительного использования гидрида титана в качестве источника водорода, продолжительное пребывание TiHx при повышенных температурах в тесном контакте с материалом реторты, нержавеющей сталью, стимулирует диффузионные процессы, приводящие к образованию легкоплавких композиций титана с элементами, входящими в ее состав. В результате локального расплавления возможно нарушение целостности реторты, что чревато выбросом водорода и его возгоранием.

Техническим результатом заявленного изобретения является:

1) снижение энергетических затрат на проведение операций гидрирования-дегидрирования и увеличение тем самым экономической эффективности технологического процесса в целом;

2) повышение безопасности процесса.

Технический результат достигается тем, что в способе получения порошков тантала, включающем активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции его из насыщенных металлогидридов, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка с использованием в качестве сорбентов водорода ненасыщенных металлогидридов, согласно изобретению при активации и гидрировании слитка тантала в качестве источника водорода используют насыщенный гидрид интерметаллического соединения LaNi4Co, а дегидрирование проводят в две стадии: сначала дегидрируемый ТаНх нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNi4Co, затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNi4Co.

Технологическая схема получения порошков представлена на рис. 2.

Сущность изобретения заключается в следующем.

Активацию исходного слитка тантала осуществляют нагреванием его до температуры 700-900°C в атмосфере чистого водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции этого газа из насыщенного гидрида интерметаллического соединения LaNi4Co. Использование этого ИМС в качестве базового сорбента не требует нагревания его до столь высоких температур, которые необходимы для насыщения и дегазации TiHx (350-950°C). Гидрид LaNi4CoHx образуется и разлагается при температурах, близких к комнатной. Поэтому для создания требуемого при активации тантала избыточного давления водорода и подержания его на заданном уровне в процессе гидрирования достаточно подогрева гидрида ИМС до температурного уровня 30-80°C, обеспечивающего разложение LaNi4CoHx и компенсацию сопутствующего этому эндотермического эффекта.

Дегидрирование порошка ТаНх проводят в две стадии: удаление из гидрида тантала основного количества водорода и снижение остаточной концентрации [Н]Та до требуемых потребителями значений.

На первой стадии порошок ТаНх нагревают от комнатной температуры до 800-850°C. В данном интервале выделяется основная часть водорода, которую поглощают с помощью ненасыщенного гидрида LaNi4CoHx. Сорбция осуществляется при комнатной температуре, подогрева поглотителя не требуется. При этом [Н]та снижается до ~0,1% (мас.).

На второй стадии дегидрируемый порошок нагревают до 850-900°C и выделяющийся из него остаточный водород поглощают с помощью дополнительного сорбента - ИМС LaNi4Co, предварительно активированного в атмосфере водорода при комнатной температуре с последующей дегазацией при 80-100°C. В результате получают порошок тантала, содержащий менее 0,05% (мас.) водорода.

Использование ИМС LaNi4Co в качестве базового и дополнительного сорбента водорода позволяет значительно сократить энергетические затраты на проведение операций гидрирования-дегидрирования, поскольку резко уменьшается расход электроэнергии: для подогрева насыщенного гидрида LaNi4Co до 30-80°C и дегазации дополнительного сорбента при 80-100°C ее требуется во много раз меньше, чем при нагревании и поддержании высокой температуры, необходимой для образования (350-400°C) и разложения (550-950°C) гидрида титана. Таким образом, повышается экономическая эффективность ГСПП в замкнутом цикле по водороду. При этом минимизируются риски, связанные с возможностью нарушения целостности реторты из-за образования легкоплавких композиций и локального расплавления ее материала, и, следовательно, обеспечивается безопасное проведение технологического процесса.

Примеры осуществления способа

Исходным материалом для получения порошков тантала служили слитки электронно-лучевой плавки массой около 150 кг. Порошки получали известным методом (пример 1) и заявленным способом (пример 2). Активацию слитка тантала осуществляли нагревом до 700-900°C в атмосфере водорода, которую создавали перед началом подъема температуры. В первом случае для этой цели использовали газ, образующийся при разложении гидрида ИМС La1-yRyNi4Co. Одновременно с гидрируемым металлом нагревали и насыщенный TiHx, а когда избыточное давление водорода, выделяющегося при его разложении, достигало 0,2-0,3 МПа, подавали этот газ в зону реакции. Во втором случае атмосферу водорода создавали и проводили весь процесс гидрирования только за счет разложения насыщенного гидрида ИМС LaNi4Co.

Для осуществления процессов гидрирования-дегидрирования использовали установку, принципиальная схема которой представлена на рис. 3. Слиток тантала загружали в стальную реторту 1, которую помещали в электропечь 2, герметизировали и вакуумировали с помощью форвакуумного насоса 3. Металлогидриды находились в оснащенных мановакумметрами 4-6 стальных герметизированных сосудах: насыщенные - в ретортах 7 и 8 (пример 1), 7 (пример 2); ненасыщенные (в обоих случаях) - в реторте 9; дегазированный (пример 2) - в реторте 8. Реторту 1 заполняли водородом до избыточного давления около 0,01-0,02 МПа и плавно нагревали до температуры активации. При этом давление, регистрируемое мановакуумметром 10, сначала возрастало за счет теплового расширения газа примерно до 0,25-0,3 МПа, а затем снижалось, что свидетельствовало о начале гидрирования. Количество поглощаемого водорода измеряли счетчиком 11, показания которого соответствуют объему, занимаемому газом при нормальных условиях.

Активация слитка занимала 3,5-4 ч, выдержка при достигнутой температуре, обеспечивающая диффузию водорода с поверхности в толщу слитка металла, длилась примерно столько же, и общая продолжительность высокотемпературной фазы процесса составляла ~8 ч. Затем температуру в реторте 1 постепенно снижали вплоть до полного остывания в течение ~40 ч. После выгрузки из реторты синтезированный гидрид тантала измельчали в шаровой мельнице до порошка с размером частиц менее 125 мкм, подвергали классификации и направляли на дегидрирование в стальную реторту 12, оснащенную мановакуумметром 13, которую нагревали электропечью 14 до температуры 850-900°C. Выделяющийся при этом водород пускали в реторту 9, а на стадии удаления остаточного водорода (пример 2) - в реторту 8.

Потоки газа в системе регулировали с помощью вентилей 15. Технический водород, необходимый для первоначального гидрирования титановой губки и интерметаллических соединений (La1-yRyNi4Co и LaNi4Co), поступал из стандартного газового баллона 16 через вентиль 17 и редуктор 18.

Пример 1. Для активации слитка тантала в реторту 1 подавали водород из сосуда 8, заполненного гидридом ИМС La0,78Ce0,22Ni4Co. Одновременно с нагревом танталового слитка до температуры активации разогревали находившийся в реторте 7 насыщенный гидрид титана (наводороженную титановую губку) до температуры 550-950°C, используя для этого электропечь 19. Выделяющийся при разложении TiHx газ подавали в реторту 1, поддерживая в ней избыточное давление, необходимое для гидрирования слитка.

При дегидрировании порошка тантала десорбирующийся из него водород поглощали с помощью ненасыщенного гидрида титана, помешенного в реторту 9 и нагретого до температуры 350-400°C с помощью электропечи 20.

Пример 2. Для активации и гидрирования слитка тантала в реторту 1 подавали водород из сосуда 7, заполненного насыщенным гидридом ИМС LaNi4Co. Необходимое избыточное давление газа создавали и поддерживали путем подогрева до 30-80°C с помощью ленточного нагревателя 21.

На первой стадии дегидрирования основную часть водорода, выделяющегося из порошка ТаНх при нагреве до 800-850°C, поглощали с помощью ненасыщенного гидрида ИМС LaNi4Co, находившегося в реторте 9 при комнатной температуре. Чтобы компенсировать сопутствующий этому экзотермический эффект, реторту охлаждали проточной водой с помощью змеевика 22.

На второй стадии дегидрирования остаточную часть водорода, выделяющегося из порошка ТаНх при нагреве до 850-900°C, поглощали с помощью помещенного в реторту 8 дополнительного сорбента LaNi4Co, который предварительно активировали в атмосфере Н2 при комнатной температуре и дегазировали при 80-100°C. При работе дополнительного водородопоглотителя сорбция также осуществляется при комнатной температуре, подогрев не требуется.

В приведенной ниже таблице сопоставлены затраты электроэнергии на нагрев сорбентов водорода при проведении операций гидрирования слитка тантала и дегидрирования ТаНх для известного (пример 1) и заявленного (пример 2) способов получения порошков тантала. Представленные в таблице данные свидетельствуют о том, что использование ИМС LaNi4Co вместо титановой губки позволяет сократить расход электроэнергии в 6,8 раза.

Кроме того, изобретение повышает безопасность процесса получения порошка тантала.

Способ получения порошков тантала, включающий активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа, которую создают путем десорбции его из насыщенных металлогидридов, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка с использованием в качестве сорбентов водорода ненасыщенных металлогидридов, отличающийся тем, что при активации и гидрировании слитка тантала в качестве источника водорода используют насыщенный гидрид интерметаллического соединения LaNiCo, а дегидрирование проводят в две стадии, причем сначала дегидрируемый порошок ТаН нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNiCo, а затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNiCo.
Способ получения порошков тантала
Способ получения порошков тантала
Способ получения порошков тантала
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
27.04.2016
№216.015.3788

Способ получения многослойного высокотемпературного сверхпроводящего материала

Использование: для получения многослойного высокотемпературного сверхпроводящего материала. Сущность изобретения заключается в том, что способ получения включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально...
Тип: Изобретение
Номер охранного документа: 0002582489
Дата охранного документа: 27.04.2016
26.08.2017
№217.015.d4c9

Способ селективного извлечения иттрия и европия из продуктов переработки отходов люминофоров

Изобретение относится к способу селективного извлечения иттрия и европия из продуктов переработки отходов люминофоров. Способ включает растворение исходного продукта, взятого в виде плава хлоридов, в дистиллированной воде. Раствор обрабатывают 40%-ной фтористоводородной кислотой. Полученный...
Тип: Изобретение
Номер охранного документа: 0002622474
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.e760

Способ получения многослойного высокотемпературного сверхпроводящего материала

Изобретение относится к области технологий получения эпитаксиальных оксидных сверхпроводящих покрытий на металлической подложке, предварительно покрытой биаксиально текстурированным оксидным слоем и буферными оксидными слоями, или на биаксиально текстурированной металлической подложке,...
Тип: Изобретение
Номер охранного документа: 0002627130
Дата охранного документа: 03.08.2017
19.01.2018
№218.016.0900

Способ получения мелкодисперсных сферических титансодержащих порошков

Изобретение относится к получению мелкодисперсного сферического титансодержащего порошка. Способ включает гидрирование исходного материала в виде слитков, проката и отходов проката титана и сплавов на основе титана, измельчение и рассев гидрированного материала, дегидрирование, измельчение,...
Тип: Изобретение
Номер охранного документа: 0002631692
Дата охранного документа: 26.09.2017
15.11.2018
№218.016.9d8d

Способ получения тетрахлорида кремния высокой чистоты

Изобретение относится к технологии получения высокочистого тетрахлорида кремния и может быть использовано в производстве тетрахлорида кремния оптического качества, применяемого в технологии синтеза сцинтилляционных материалов, предназначенных для создания детектирующих медицинских систем, и в...
Тип: Изобретение
Номер охранного документа: 0002672428
Дата охранного документа: 14.11.2018
06.06.2023
№223.018.7801

Устройство для выращивания монокристаллов арсенида галлия методом чохральского

Изобретение относится к оборудованию для выращивания монокристаллов арсенида галлия, являющихся перспективными для использования в микроэлектронике, солнечной энергетике и ИК-оптике. Устройство для выращивания монокристаллов арсенида галлия методом Чохральского включает ростовую водоохлаждаемую...
Тип: Изобретение
Номер охранного документа: 0002785892
Дата охранного документа: 14.12.2022
Showing 1-10 of 14 items.
20.09.2014
№216.012.f61e

Способ получения наноразмерных порошков титаната лития

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом...
Тип: Изобретение
Номер охранного документа: 0002528839
Дата охранного документа: 20.09.2014
10.01.2015
№216.013.1aaa

Способ получения наноразмерных порошков композита на основе титаната лития

Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития LiTiO/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной...
Тип: Изобретение
Номер охранного документа: 0002538254
Дата охранного документа: 10.01.2015
27.04.2015
№216.013.476f

Способ получения тантала алюминотермическим восстановлением его оксида

Изобретение относится к внепечному алюминотермическому восстановлению тантала. Готовят шихту, содержащую оксид тантала TaO, алюминий и гипс в качестве термитной добавки при соотношении TaO:CaSO=(1,6-1,7):1. Процесс восстановления проводят в вакуумной камере в атмосфере аргона при давлении...
Тип: Изобретение
Номер охранного документа: 0002549791
Дата охранного документа: 27.04.2015
27.04.2016
№216.015.3942

Способ получения порошков тантала

Изобретение относится к получению высокочистого порошка тантала гидридным методом. Способ включает активацию слитка тантала нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида тантала до заданной...
Тип: Изобретение
Номер охранного документа: 0002582414
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3cf3

Способ получения галлия высокой чистоты

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В...
Тип: Изобретение
Номер охранного документа: 0002583574
Дата охранного документа: 10.05.2016
27.08.2016
№216.015.4efb

Способ переработки отходов люминофоров на основе сульфида цинка, содержащих иттрий и европий

Изобретение относится к металлургии редких и редкоземельных металлов, а именно к способу переработки люминофоров на основе сульфида цинка, и может быть использовано для получения обогащенного по иттрию и европию концентрата. Способ включает сушку сырья при температуре 150÷320°C в течение 2-3...
Тип: Изобретение
Номер охранного документа: 0002595314
Дата охранного документа: 27.08.2016
25.08.2017
№217.015.9a30

Способ получения мелкодисперсного порошка титана

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека. В качестве исходного...
Тип: Изобретение
Номер охранного документа: 0002609762
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9d55

Способ получения порошков ниобия

Изобретение относится к получению высокочистого порошка ниобия гидридным методом. Способ включает активацию слитка ниобия нагреванием до 700-900°С, гидрирование его с использованием насыщенного гидрида титана в качестве источника водорода, измельчение полученного гидрида ниобия до заданной...
Тип: Изобретение
Номер охранного документа: 0002610652
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.b151

Неорганический монокристаллический сцинтиллятор

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в...
Тип: Изобретение
Номер охранного документа: 0002613057
Дата охранного документа: 15.03.2017
26.08.2017
№217.015.d4c9

Способ селективного извлечения иттрия и европия из продуктов переработки отходов люминофоров

Изобретение относится к способу селективного извлечения иттрия и европия из продуктов переработки отходов люминофоров. Способ включает растворение исходного продукта, взятого в виде плава хлоридов, в дистиллированной воде. Раствор обрабатывают 40%-ной фтористоводородной кислотой. Полученный...
Тип: Изобретение
Номер охранного документа: 0002622474
Дата охранного документа: 15.06.2017
+ добавить свой РИД