×
04.04.2018
218.016.3568

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ДВИГАТЕЛЯ С НАДДУВОМ И СООТВЕТСТВУЮЩИЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002645856
Дата охранного документа
28.02.2018
Аннотация: Способ диагностики двигателя внутреннего сгорания с наддувом, оборудованного турбокомпрессором фиксированной геометрии, содержащим компрессор, через который проходит воздух, поступающий во впускную систему двигателя, и турбину, которая связана во вращении с компрессором через общий вал и через которую проходят выхлопные газы двигателя в выпускную систему двигателя, при этом указанный двигатель связан: с дроссельным клапаном для изменения пропускного сечения воздуха, поступающего во впускную систему двигателя; и с разгрузочным вентилем waste-gate, установленным параллельно с турбиной в выпускной системе двигателя для изменения количества выхлопных газов, проходящих через турбину, при этом содержит: этап вычисления первого временного интеграла измерения атмосферного давления в течение времени вычисления; этап вычисления временного интеграла измерения давления наддува в течение указанного времени вычисления; этап вычисления второго временного интеграла измерения атмосферного давления в течение указанного времени вычисления; этап вычисления двух критериев диагностики; этап сравнения первого критерия диагностики с первым порогом диагностики и сравнения второго критерия диагностики с вторым порогом диагностики; и этап диагностики неисправности, когда по меньшей мере один из двух критериев диагностики меньше своего соответствующего порога диагностики. Техническим результатом является повышение точности диагностики двигателя. 2 н. и 10 з.п. ф-лы, 3 ил.

Область техники, к которой относится изобретение

Изобретение относится к способу бортовой диагностики двигателя внутреннего сгорания с наддувом, в частности автотранспортного средства, оборудованного турбокомпрессором фиксированной геометрии и разгрузочным вентилем на выхлопе. Оно относится также к двигателю, в котором можно применять такой способ.

Уровень техники

Наддув позволяет повысить характеристики двигателя за счет массового расхода воздуха, подаваемого для сжигания топлива, который превышает расход в атмосферном двигателе с эквивалентным объемом цилиндров. Устройство наддува двигателя может, например, содержать турбокомпрессор, содержащий, с одной стороны, компрессор, который питает двигатель воздухом под давлением, превышающим атмосферное давление, и, с другой стороны, турбину, через которую проходят все или часть выхлопных газов двигателя. Мощность, сообщаемая турбине при расширении проходящих через нее газов, передается через вал на компрессор, который сжимает воздух, всасываемый из наружной атмосферы, до так называемого давления наддува.

Многочисленные двигатели, в частности бензиновые двигатели, оборудованы турбокомпрессором с фиксированной геометрией (известным также под сокращением: TGF), то есть турбина которого имеет не регулируемые лопатки. Турбина турбокомпрессора связана с разгрузочным вентилем на выхлопе, называемым также вентилем "waste-gate" в английской терминологии, степень открывания которого позволяет регулировать количество проходящих через турбину выхлопных газов и, таким образом, модулировать мощность, отбираемую турбиной у выхлопных газов, и регулировать давление наддува.

Из предшествующего уровня техники известны различные способы диагностики, предназначенные для оценки работы наддува в двигателе, например, автотранспортного средства, чтобы ограничивать характеристики двигателя и/или оповещать водителя о необходимости ремонта или о превышении допустимого уровня вредных выбросов по причине недостаточной компрессии. Например, в публикации FR-B1-2923262 раскрыт способ обнаружения неисправности в устройстве наддува воздуха, который основан на непрерывном измерении давления газов на входе турбины и согласно которому:

- убеждаются, что двигатель находится в состоянии регулирования, в котором турбокомпрессор управляется при помощи давления на входе турбины Pavt;

- периодически измеряют это давление на входе турбины Pavt;

- при каждом измерении вычисляют значение , где является заданным значением давления на входе турбины;

- если ΔPavt больше или равно нулю, из него вычитают заранее определенное значение, называемое «мертвой полосой» ВМ, и сохраняют положительные значения, в противном случае его заменяют нулем;

- вычисляют временной интеграл I отклонения контура давления при помощи уравнения: ;

- если I превышает заранее определенный порог, диагностируют неисправное состояние.

Однако известным способам диагностики не хватает точности. Большинство из них можно применять только в случае, если давление наддува регулируется в замкнутом контуре посредством открывания разгрузочного вентиля, чтобы соответствовать заданному значению момента, задаваемому водителем. Однако такое регулирование в замкнутом контуре используют не всегда; в частности, зона рабочих точек режим-нагрузка двигателя во время европейского ездового цикла NEDC, в котором вычисляют вредные выбросы двигателя автотранспортного средства, в основном перекрывает зону рабочих точек, в котором наддув, наоборот, регулируют в открытом контуре. Известные способы, например, такие как описанный выше способ, не позволяют соблюдать требования европейской нормы, называемой "OBD euro6", которая требует диагностики наддува во время цикла NEDC для любого транспортного средства.

Раскрытие изобретения

Изобретение предназначено для устранения недостатков известных способов диагностики. Для этого изобретением предложен способ диагностики двигателя внутреннего сгорания с наддувом, оборудованного турбокомпрессором фиксированной геометрии, содержащим компрессор, через который проходит воздух, поступающий во впускную систему двигателя, и турбину, которая связана во вращении с компрессором через общий вал и через которую проходят выхлопные газы двигателя в выпускную систему двигателя, при этом указанный двигатель связан:

- с дроссельным клапаном для изменения пропускного сечения воздуха, поступающего во впускную систему двигателя; и

- с разгрузочным вентилем, установленным параллельно с турбиной в выпускной системе двигателя для изменения количества выхлопных газов, проходящих через турбину,

отличающийся тем, что содержит:

- этап вычисления первого временного интеграла измерения атмосферного давления в течение времени вычисления;

- этап вычисления временного интеграла измерения давления наддува в течение указанного времени вычисления;

- этап вычисления второго временного интеграла измерения атмосферного давления в течение указанного времени вычисления;

- этап вычисления двух критериев диагностики, зависящих от первого временного интеграла атмосферного давления, от временного интеграла давления наддува и от второго временного интеграла атмосферного давления;

- этап сравнения первого критерия диагностики с первым порогом диагностики и сравнения второго критерия диагностики с вторым порогом диагностики; и

- этап диагностики неисправности, когда по меньшей мере один из двух критериев диагностики меньше своего соответствующего порога диагностики.

Краткое описание чертежей

Другие отличительные признаки и преимущества изобретения будут более очевидны из нижеследующего описания не ограничительного варианта его выполнения со ссылками на прилагаемые чертежи, на которых:

фиг. 1 - схематичный вид двигателя внутреннего сгорания, в котором можно применять способ в соответствии с изобретением;

фиг. 2 - различные варианты регулирования наддува в двигателе в зависимости от режима двигателя и от давления воздуха во впускном коллекторе двигателя;

фиг. 3 - схема этапов способа диагностики двигателя с наддувом в соответствии с изобретением.

Осуществление изобретения

На фиг. 1 схематично представлен двигатель 1 внутреннего сгорания, установленный, например, на автотранспортном средстве (не показано), оборудованный турбокомпрессором 2 с фиксированной геометрией и связанный с определенным числом деталей, образующих систему впуска воздуха в двигатель 1 и систему выпуска выхлопных газов из двигателя 1.

Система впуска воздуха содержит воздушный фильтр 3, первый воздушный трубопровод, называемый трубопроводом соединения фильтр-расходомер, который соединяет воздушный фильтр 3 с расходомером 5, измеряющим массовый расход Q воздуха, всасываемого из наружной атмосферы. Второй воздушный трубопровод 6, называемый трубопроводом соединения расходомер-турбокомпрессор, соединяет расходомер 5 с входом компрессора 7 турбокомпрессора 2. Выход компрессора 7 соединен с концом третьего трубопровода 8, называемого трубопроводом соединения турбокомпрессор-охладитель. Другой конец этого третьего трубопровода 8 соединен с входом охладителя 9 воздуха наддува, известного также под аббревиатурой RAS (по заглавным буквам выражения: Refroidisseur d’Air - охладитель воздуха наддува). Разгрузочный трубопровод 10 на впуске, на котором установлен разгрузочный вентиль 11 на впуске, называемый также вентилем 11 pop-off в английской терминологии, установлен параллельно с компрессором 7. В частности, один из его концов отходит от второго трубопровода 6, а другой конец сообщается с третьим трубопроводом 8.

Четвертый трубопровод 12, называемый трубопроводом соединения охладитель RAS-дроссель, соединяет охладитель 9 с входом дроссельного клапана 13. Он оснащен датчиком 14 давления наддува, выполненным с возможностью измерения давления наддува Psural воздуха. Выход дроссельного клапана соединен с одним концом пятого трубопровода 15, называемого трубопроводом соединения дроссель-двигатель, другой конец которого соединен с впускным коллектором 16 двигателя 1. Впускной коллектор 16 оснащен датчиком 17 давления воздуха, выполненным с возможностью измерения воздуха Pcoll во впускном коллекторе, то есть давления воздуха, поступающего в двигатель 1.

Классически двигатель 1 содержит блок цилиндров, ограничивающий несколько цилиндров (четыре на фиг. 1), головку блока, ограничивающую несколько камер сгорания, связанных с впускным каналом, по меньшей мере с одним впускным клапаном, со средствами впрыска топлива, например, с бензиновым инжектором, по меньшей мере с одним выпускным клапаном и с каналом выпуска отработавших газов.

Система выпуска отработавших газов двигателя 1 содержит выпускной коллектор 18, который соединяет выход двигателя 1 с входом турбины 19 турбокомпрессора 2. Выход турбины 19 соединен с концом выхлопной трубы 20 выпуска отработавших газов, которая может содержать различные устройства (на фиг. 1 не показаны) для обработки вредных выбросов в выхлопных газах двигателя.

Трубопровод 21 разгрузки на выхлопе, на котором установлен разгрузочный вентиль 22 на выхлопе, называемый также вентилем waste-gate в английской терминологии, установлен параллельно с турбиной в выпускной системе двигателя 1. В частности, один из его концов отходит от выхода выпускного коллектора 18, а другой конец сообщается с выхлопной трубой 20.

Турбокомпрессор 2, который в данном случае имеет фиксированную геометрию, то есть турбокомпрессор с неподвижными лопатками турбины 19, содержит компрессор 7, который входит в состав впускной воздушной системы двигателя 1, и турбину 19, которая входит в состав выпускной системы двигателя 1. Турбокомпрессор 2 содержит вал 23, с которым связаны во вращении компрессор 7 и турбина 19.

Во впускной системе двигателя 1 турбокомпрессор 2 связан с вентилем pop-off 11 и с вентилем waste-gate 22. Эти два вентиля 11, 22 предпочтительно соединены с турбокомпрессором 2.

Как известно, во время работы двигателя 1 происходит следующее: воздух, поступающий снаружи транспортного средства при атмосферном давлении Patmo, проходит через впускную систему двигателя 1 в направлении стрелок. Он фильтруется в воздушном фильтре 3, после чего расходомер 5 измеряет массовый расход Q воздуха.

В не показанном варианте в рамках изобретения массовый расход Q воздуха можно также определить как разность между массовым расходом выхлопных газов Qech (измеряемым расходомером на выхлопе) и массовым расходом топлива Qcarb, впрыскиваемого в двигатель для сжигания в цилиндрах двигателя 1, по принципу сохранения массы. Его можно также определять при помощи картографии двигателя 1, например, в зависимости от совокупности параметров, включающей в себя по меньшей мере давление воздуха Pcoll во впускном коллекторе, режим N двигателя и значение, характеризующее открывание α дроссельного клапана 13, и в этом случае для определения массового расхода Q воздуха расходомер 5 не нужен.

Воздух сжимается компрессором 7. В данном случае и далее в описании предполагается, что вентиль pop-off 11 полностью закрыт, то есть весь воздух, проходящий через компрессор 7, поступает затем в охладитель RAS 9. Сжатый воздух охлаждается в охладителе RAS 9, затем проходит в камеры сгорания двигателя 1 через впускной коллектор 16.

В зависимости от режима N и от заданного значения момента С, отображающего потребность в крутящем моменте и, в частности, связанного с нажатием на педаль акселератора (не показана) транспортного средства водителем и с различными приводами (не показанными), такими как компрессор кондиционера или генератор двигателя 1, вычислительное устройство 24 двигателя, соединенное с совокупностью датчиков и приводов, в которую входят по меньшей мере:

- расходомер 5;

- дроссельный клапан 13;

- датчик давления наддува 14;

- датчик давления воздуха 17 во впускном коллекторе 16; и

- вентиль waste-gate 22,

определяет, с одной стороны, массовый расход Q воздуха и, с другой стороны, массовый расход Qcarb топлива, впрыскиваемого в двигатель, которое чаще всего может находиться в стехиометрических пропорциях в случае бензинового двигателя 1.

Массовый расход Q воздуха выражается заданным значением открывания α дроссельного клапана 13 и заданным значением давления Pcoll впускного коллектора. Теоретически данный массовый расход Q воздуха (измеряемый в кг/с) можно получить за счет различного выбора заданного значения открывания α дроссельного клапана 13 и заданного значения открывания вентиля waste-gate 22: первое заданное значение позволяет регулировать пропускное сечение для воздуха, поступающего во впускную систему, то есть влияет на его объемный расход (измеряемый в м3/с). Второе заданное значение позволяет регулировать количество выхлопных газов двигателя 1, которое проходит через турбину с отводом части выхлопных газов двигателя 1 через вентиль waste-gate 22, который установлен параллельно с турбиной 19 в выпускной системе двигателя 1. Таким образом, модулируют мощность, отбираемую у выхлопных газов турбиной 19, что позволяет регулировать давление наддува Psural, то есть влияет на плотность впускаемого воздуха (измеряемую в кг/м3).

Чтобы упростить управление двигателем 1, регулирование давления воздуха Pcoll во впускном коллекторе осуществляют, воздействуя только на один привод, выбранный среди дроссельного клапана 13 и вентиля waste-gate 22, как показано на фиг. 2.

На фиг. 2 представлены два варианта регулирования давления Pcoll впускного коллектора. На оси абсцисс показан режим вращения N двигателя, а на оси ординат показано давление воздуха Pcoll во впускном коллекторе, измеряемое датчиком 17 давления воздуха.

При относительно небольших потребностях двигателя 1 в моменте С, то есть при невысоких значениях давления Pcoll впускного коллектора, меньших давления порога, который является функцией режима N, отображаемого кривой 25, двигатель находится в варианте регулирования наддува, называемом «естественным наддувом», который соответствует следующим условиям:

- Вентиль waste-gate 22 полностью закрыт, то есть весь поток выхлопных газов Qech, выходящий из двигателя 1, проходит через турбину 19 и передает ей энергию расширения, которая передается на компрессор 2 через вал 23 для сжатия потока Q воздуха.

- Давление воздуха Pcoll во впускном коллекторе регулируют в открытом контуре по заданному значению давления при помощи вычислительного устройства 24, воздействуя на значение открывания α дроссельного клапана 13. Давление наддува Psural не регулируют напрямую, и оно является результирующей открывания а дроссельного клапана 13 и давления воздуха Pcoll во впускном коллекторе.

При относительно высоких потребностях двигателя в моменте С, то есть при больших значениях давления Pcoll впускного коллектора, превышающих порог давления, зависящий от режима N, отображаемого кривой 25, двигатель находится в варианте регулирования наддува, называемом «регулированием в замкнутом контуре».

Дроссельный клапан 13 полностью открыт, то есть пропускное сечение и объемный расход впускаемого воздуха являются максимальными. Давление Pcoll воздуха во впускном коллекторе совпадает с давлением наддува Psural. Давление Pcoll воздуха во впускном коллекторе регулируют в замкнутом контуре по заданному значению давления при помощи вычислительного устройства 24, воздействуя на открывание вентиля waste-gate 22.

На фиг. 3 показаны этапы способа диагностики двигателя 1 с наддувом в соответствии с изобретением.

Способ содержит этап 100 вычисления первого временного интеграла I1 атмосферного давления Patm в течение времени вычисления Т в соответствии с уравнением:

Этот этап 100 начинается, когда вычислительное устройство 24 определяет, что массовый расход Q воздуха (измеряемый расходомером 5) меньше первого порога расхода Q1, ниже которого турбокомпрессор 2 практически не обеспечивает сжатия впускаемого воздуха, и энергия, сообщаемая турбине 19 выхлопными газами, является ничтожной. Атмосферное давление Patm ассимилируется с давлением наддува Psural, при этом потери напора во впускной системе двигателя, в частности в воздушном фильтре 3 и в охладителе 9 воздуха наддува, являются ничтожными. Таким образом, предпочтительно атмосферное давление Patm определяют при помощи датчика 14 давления наддува.

Интегрирование атмосферного давления Patm продолжается, пока массовый расход Q воздуха остается ниже первого порога расхода Q1. Если в какой-то момент вычисления первого интеграла I1 массовый расход Q воздуха превышает первый порог Q1, вычисление сразу прерывается, и способ возвращается на начало этапа 100. В противном случае вычисление первого интеграла I1 продолжается до истечения времени вычисления Т, и этап 100 завершается, когда вычисление заканчивается, то есть приходит к завершению без прерывания.

После завершения этапа 100 способ продолжается этапом 200 вычисления временного интеграла I2 давления наддува Psural в варианте естественного наддува в течение такого же времени вычисления Т, что и время вычисления первого временного интеграла I1 атмосферного давления, в соответствии с уравнением:

Этот этап 200 начинается, когда вычислительное устройство 24 определяет, что наддув происходит в режиме естественного наддува (описанном со ссылками на фиг. 2), но при этом учитывается также сжатие воздуха. Это происходит, когда одновременно соблюдаются два следующих условия:

- 1-е условие: массовый расход Q воздуха (измеряемый расходомером 5) превышает второй порог расхода Q2, строго превышающий первый порог расхода Q1; и

- 2-е условие: давление воздуха Pcoll воздуха во впускном коллекторе (измеряемое датчиком 17 давления) ниже порога давления, зависящего от режима N двигателя (соответствующего кривой 25 на фиг. 2).

Интегрирование давления наддува Psural продолжается, пока соблюдаются вышеуказанные 1-е и 2-е условия. Если в какой-то момент вычисления интеграла I2 давления наддува по меньшей мере одно из двух условий не соблюдено, это вычисление сразу прерывается, и способ возвращается на начало этапа 200. В противном случае вычисление интеграла I2 продолжается до истечения времени вычисления Т. Этап 200 завершается, когда вычисление заканчивается, то есть приходит к завершению без прерывания.

Способ диагностики продолжается первым тестовым этапом 300, в ходе которого вычислительное устройство определяет время Т', которое разделило завершение удачного вычисления первого интеграла I1 атмосферного давления и начало удачного вычисления интеграла I2 давления наддува.

Если это время Т' превышает порог времени Ts, первый тестовый этап 300 возвращает способ диагностики на начало этапа 100. В противном случае способ продолжается этапом 400 вычисления второго временного интеграла I3 атмосферного давления Patm в течение времени вычисления Т в соответствии с уравнением:

Как и в случае этапа 100, этот этап 400 начинается, когда вычислительное устройство 24 определяет, что массовый расход Q воздуха (измеряемый расходомером 5) меньше первого порога расхода Q1, ниже которого турбокомпрессор 2 практически не обеспечивает сжатия впускаемого воздуха, и энергия, сообщаемая турбине 19 выхлопными газами, является ничтожной. Атмосферное давление Patm опять ассимилируется с давлением наддува Psural и его определяет датчик 14 давления наддува.

Интегрирование атмосферного давления Patm продолжается, пока массовый расход Q воздуха остается ниже первого порога расхода Q1. Если в какой-то момент вычисления второго интеграла I3 массовый расход Q воздуха превышает первый порог Q1, вычисление немедленно прекращается, и способ возвращается на начало этапа 400. В противном случае вычисление второго интеграла I3 продолжается до истечения времени вычисления Т, и этап 400 завершается, когда вычисление заканчивается, то есть приходит к завершению без прерывания.

Способ диагностики продолжается вторым тестовым этапом 500, в ходе которого вычислительное устройство определяет время Т", которое разделило завершение удачного вычисления интеграла I2 давления наддува и начало удачного вычисления интеграла I3 давления наддува.

Если это время Т" превышает порог времени Ts, второй тестовый этап 500 возвращает способ диагностики на начало этапа 100. В противном случае способ продолжается третьим тестовым этапом 600, в ходе которого сравнивают первый и второй интегралы I1, I3 атмосферного давления. Этот этап 600 позволяет убедиться, что внешние условия хода способа диагностики в целом остаются постоянными в течение всего времени его осуществления, чтобы не допустить искажения результата. Например, высота над уровнем моря не должна меняться слишком быстро, что, в частности, исключает случаи, когда транспортное средство движется по крутому склону в горах.

На этапе 600 сравнивают разность между первым интегралом I1 атмосферного давления и вторым интегралом I3 атмосферного давления с порогом отклонения S. Если эта разность превышает порог отклонения S, способ возвращается на начало этапа 100. В противном случае способ продолжается этапом 700 вычисления двух критериев C1, С2 диагностики.

Первый критерий C1 диагностики равен разности между:

- временным интегралом I2 давления наддува; и

- средним арифметическим первого и второго временных интегралов I1, I3 атмосферного давления, в соответствии с уравнением:

Второй критерий С2 диагностики равен соотношению между:

- временным интегралом I2 давления наддува, поделенным

- на среднее арифметическое первого и второго временных интегралов I1, I3 атмосферного давления, в соответствии с уравнением:

Способ диагностики продолжается этапом 800 диагностики, на котором сравнивают первый критерий C1 диагностики с первым порогом S1 диагностики и второй критерий С2 диагностики с вторым порогом S2 диагностики.

Если по меньшей мере один из двух критериев С1, С2 меньше соответствующего порога S1, S2 диагностики, этап 800 диагностики направляет способ на этап 900 диагностики неисправности, то есть этап 900 тревожного оповещения, на котором водитель транспортного средства получает оповещение о неисправности наддува, например, при помощи светового сигнала на приборной панели транспортного средства.

В противном случае не происходит передача никакого тревожного сигнала, и способ диагностики возвращается на начало этапа 100. Таким образом, изобретение позволяет получить способ бортовой диагностики, который работает непрерывно и в режиме естественного регулирования двигателя 1.

Например, время вычисления Т интегралов I1, I2, I3 атмосферного давления и давления наддува по существу равно 3 секундам, и порог времени Ts между вычислениями различных интегралов I1, I2, I3 меньше 10 секунд.

Предпочтительно порог отклонения S интеграла атмосферного давления меньше 60 миллибар*с, если время Т вычисления интегралов равно 3 секундам, то есть в среднем за время вычисления в 3 секунды атмосферное давление Patm меняется не более чем на 20 миллибар между этапами 100 и 400 способа диагностики.

Предпочтительно первый порог S1 диагностики находится в интервале между 100 и 150 миллибар*с, и второй порог S2 диагностики находится в интервале между 1,02 и 1,06 при времени Т вычисления интегралов, равном 3 секундам, и при по существу постоянном атмосферном давлении, равном 1013 миллибар, то есть равном нормальному давлению на уровне моря. Эти пороги можно индексировать по высоте над уровнем моря, то есть по значению атмосферного давления, измеренной, например, в начале этапа 100 способа, и сохраняются в виде картографии в памяти вычислительного устройства 24.

Пороги расхода Q1, Q2 можно определить заранее в ходе испытаний, и они зависят от типа двигателя 1 и турбокомпрессора 2. В частности, их значения должны быть тем больше, чем больше объем цилиндров двигателя 1 и чем больше инерция турбокомпрессора 2.

Способ диагностики в соответствии с изобретением имеет целый ряд преимуществ. В отличие от известных способов он позволяет диагностировать работу наддува двигателя 1, когда он находится в режиме естественного наддува, то есть не в режиме регулирования наддува в замкнутом контуре (при помощи вентиля waste-gate 22).

Кроме того, его точность является достаточно высокой, так как все измерения атмосферного давления Patm и давления наддува Psural производит один и тот же датчик 14 давления наддува, что позволяет избегать разбросов измерения между датчиками, и так как, с другой стороны, убеждаются, что внешние условия хода способа диагностики, в частности, высота над уровнем моря, остаются по существу постоянными.


СПОСОБ ДИАГНОСТИКИ ДВИГАТЕЛЯ С НАДДУВОМ И СООТВЕТСТВУЮЩИЙ ДВИГАТЕЛЬ
СПОСОБ ДИАГНОСТИКИ ДВИГАТЕЛЯ С НАДДУВОМ И СООТВЕТСТВУЮЩИЙ ДВИГАТЕЛЬ
СПОСОБ ДИАГНОСТИКИ ДВИГАТЕЛЯ С НАДДУВОМ И СООТВЕТСТВУЮЩИЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Showing 171-180 of 238 items.
31.01.2019
№219.016.b535

Способ обработки данных, относящихся к автотранспортным средствам, с целью последующего графического построения электрических схем электрических систем

Изобретение относится к средствам обработки данных, относящихся к автотранспортным средствам, с целью последующего графического построения электрических схем электрических систем. Технический результат заключается в повышении качества электрических схем, чтобы они точно соответствовали...
Тип: Изобретение
Номер охранного документа: 0002678512
Дата охранного документа: 29.01.2019
02.02.2019
№219.016.b61e

Вращающийся расточной инструмент со съемными режущими пластинами и способ механической обработки отверстия цилиндра двигателя внутреннего сгорания

Изобретения относятся к обработке материалов резанием и могут быть использованы при обработке отверстия цилиндра в корпусе двигателя внутреннего сгорания. Вращающийся расточной инструмент содержит вращающийся корпус держателя режущих пластин, установленных в кассетах. Первая режущая пластина...
Тип: Изобретение
Номер охранного документа: 0002678501
Дата охранного документа: 30.01.2019
21.02.2019
№219.016.c576

Способ управления двигателем внутреннего сгорания

Изобретение может быть использовано в системах управления для двигателей внутреннего сгорания (ДВС). Предложен способ управления ДВС (1), во время которого: считывают значение параметра (R; С), характеризующего первую рабочую точку, и на его основании выводят первое заданное значение (СТI1)...
Тип: Изобретение
Номер охранного документа: 0002680284
Дата охранного документа: 19.02.2019
23.02.2019
№219.016.c70c

Система трансмиссии с гидравлическим модулем

Изобретение относится к системе (1) трансмиссии для передачи крутящего момента для автотранспортного средства. Система (1) трансмиссии содержит устройство (5) соединения между приводным валом (6), вращаемым силовой установкой, и механизированной колесной осью (4), содержащей две полуоси, на...
Тип: Изобретение
Номер охранного документа: 0002680559
Дата охранного документа: 22.02.2019
01.03.2019
№219.016.ced6

Оптимизация генерирования искры радиочастотного зажигания

Изобретение относится к автомобильным системам зажигания. Описан способ управления радиочастотным генератором плазмы, содержащим цепь (2) питания, содержащую выключатель (9), управляемый, по меньшей мере, одной серией импульсов управления, подающий промежуточное напряжение (Vinter) на частоте...
Тип: Изобретение
Номер охранного документа: 0002456472
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d317

Рычаг подвески для авторанспортного средства

Группа изобретений относится к рычагу подвески для автотранспортного средства. Рычаг подвески (1) для автотранспортного средства, образованный рычагом (3), крепежным элементом (2) шаровой опоры и элементами (4) удержания, образующими точки крепления рычага (3) с крепежным элементом (2) в...
Тип: Изобретение
Номер охранного документа: 0002681421
Дата охранного документа: 06.03.2019
08.03.2019
№219.016.d3af

Автотранспортное средство, содержащее откидной задний борт

Изобретение относится к области транспортного машиностроения. Автотранспортное средство имеет кузов, содержащий задний бампер, задний борт, расположенный вблизи верхней стороны заднего бампера и связанный с кузовом при помощи механической связи. Механическая связь выполнена с возможностью...
Тип: Изобретение
Номер охранного документа: 0002681414
Дата охранного документа: 06.03.2019
11.03.2019
№219.016.d966

Свеча зажигания с радиочастотной плазмой

Изобретение относится к свечам зажигания с радиочастотной плазмой, разработанным для установки в камере сгорания. Свеча содержит кольцевую оболочку (3) с основной осью D; центральный электрод (7), изготовленный из второго электропроводного материала, продолжающийся вдоль основной оси D и...
Тип: Изобретение
Номер охранного документа: 0002352041
Дата охранного документа: 10.04.2009
14.03.2019
№219.016.def5

Управление подогревом двигателя внутреннего сгорания автотранспортного средства

Изобретение относится к подогреву двигателя внутреннего сгорания автотранспортного средства. Техническим результатом является обеспечение простого и безопасного управления подогревом двигателя. Предложен способ управления подогревом двигателя для предотвращения застывания масла в двигателе,...
Тип: Изобретение
Номер охранного документа: 0002681645
Дата охранного документа: 12.03.2019
14.03.2019
№219.016.df4a

Надежное соединение усилительных вставок при помощи полимерного материала без сварки или завинчивания вставок

Группа изобретений относится к области транспортного машиностроения. Представлено соединение первой продольной усилительной вставки и второй продольной усилительной вставки при помощи частично покрывающего их полимерного материала, в котором каждая усилительная вставка содержит стенку дна и две...
Тип: Изобретение
Номер охранного документа: 0002681813
Дата охранного документа: 12.03.2019
Showing 141-148 of 148 items.
20.01.2018
№218.016.1d51

Кондиционер, в частности, кондиционер для автотранспортного средства

Изобретение относится к кондиционерам для транспортных средств. Кондиционер (4) содержит выпускной воздушный канал (33), окруженный первым ободом, для размещения уплотнительной прокладки (10), находящейся под осевым сжатием. Первый обод содержит первую опорную полосу (12), являющуюся...
Тип: Изобретение
Номер охранного документа: 0002640671
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d67

Устройство визуальной сигнализации для автотранспортного средства

Группа изобретений относится к устройству визуальной сигнализации для автотранспортного средства. Устройство (1) визуальной сигнализации для автотранспортного средства содержит источник (5) света, световод (3) и диффузионный рассеиватель (4). Источник света выполнен с возможностью излучения...
Тип: Изобретение
Номер охранного документа: 0002640678
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.1ff0

Способ оценки давления в вакуумном резервуаре сервотормоза

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления. При осуществлении способа на...
Тип: Изобретение
Номер охранного документа: 0002641364
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.21ee

Система управления электромагнитным моментом электрической машины, в частности, для автотранспортного средства

Изобретение относится к области электротехники и транспорта и может быть использовано для управления моментом трансмиссии автотранспортного средства, в частности гибридной трансмиссии автотранспортного средства, оборудованного двигателем внутреннего сгорания и приводной электрической машиной....
Тип: Изобретение
Номер охранного документа: 0002641723
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.23db

Вставка для опоры автотранспортного средства, устройство, использующее вставку, и автотранспортное средство, содержащее устройство

Изобретение относится к вставке (1) для опоры (6) автотранспортного средства и направлено на повышение надежности фиксации вставки в ее заблокированном состоянии. Вставка содержит головку, от которой отходит удлиненное тело вдоль продольной оси Z, и выполнена с возможностью менять свое...
Тип: Изобретение
Номер охранного документа: 0002642540
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.29fa

Система для смазки двух смежных и вертикально расположенных друг над другом зубчатых передач

Изобретение относится к смазочным устройствам зубчатых передач. Система для смазки двух смежных зубчатых передач (12, 13) с горизонтальными осями (А, В), установленных с возможностью вращения в герметичном картере, дно которого образует первый резервуар, называемый главным, содержащий смазочный...
Тип: Изобретение
Номер охранного документа: 0002643086
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2e54

Соединение между коленчатым валом и блоком цилиндров

Изобретение может быть использовано в двигателях внутреннего сгорания, предназначенных для автотранспортных средств. Двигатель внутреннего сгорания автотранспортного средства содержит масляный картер (13), над которым закреплен блок (10) цилиндров. Блок (10) цилиндров содержит шатунную камеру...
Тип: Изобретение
Номер охранного документа: 0002643909
Дата охранного документа: 06.02.2018
16.09.2018
№218.016.8845

Устройство и способ контроля работы клапана рециркуляции выхлопных газов с помощью механизма опережения зажигания

Изобретение относится к контролю рабочего состояния устройства рециркуляции выхлопных газов (EGR) в двигателе с принудительным зажиганием, в особенности контроля износа открытия и закрытия клапана управления рециркуляцией выхлопных газов. Технический результат заключается в определении отказа...
Тип: Изобретение
Номер охранного документа: 0002667096
Дата охранного документа: 14.09.2018
+ добавить свой РИД