×
04.04.2018
218.016.33b1

Результат интеллектуальной деятельности: Способ гидравлического разрыва карбонатного пласта

Вид РИД

Изобретение

№ охранного документа
0002645688
Дата охранного документа
27.02.2018
Аннотация: Изобретение относится к нефтяной промышленности и может быть применено при гидравлическом разрыве карбонатного пласта (ГРП). Способ включает перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты. При этом предварительно определяют проницаемость и толщину пласта. В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта. Приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла. Причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3. По завершении последнего цикла закачки продавку осуществляют пресной водой. Технический результат заключается в сохранении проводимости трещины после проведения ГРП при повышении эффективности проведения ГРП. 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве карбонатного пласта.

Известен способ гидравлического разрыва пласта (ГРП) (патент RU №2451174, МПК E21B 43/267, опубл. 20.05.2012 в бюл. №14), включающий спуск в скважину колонны насосно-компрессорных труб (НКТ) в зону ГРП, герметизацию заколонного пространства скважины пакером, закачку газа, жидкости разрыва под давлением по колонне НКТ, осуществление ГРП с образованием трещины, подачу расклинивающего агента и последующее освоение скважины, при этом газ подают вместе с жидкостью разрыва, в качестве которой используют сырую нефть, а расклинивающий агент - после закачки жидкости разрыва, причем газ используют инертный и закачивают в объеме 20-30% при давлении 8 МПа от объема жидкости разрыва, а в качестве расклинивающего агента используют нефтекислотную эмульсию с добавлением инертного газа в объеме 20-30% при давлении 9 МПа от объема расклинивающего агента, после чего цикл закачки жидкости разрыва с газом и расклинивающего агента повторяют 3-6 раз, а перед освоением в колонну НКТ закачивают технологическую жидкость с инертным газом в объеме 20-30% при давлении 10 МПа суммарным объемом, равным полуторакратному внутреннему объему колонны НКТ, с последующей технологической выдержкой на 2-3 ч, причем в каждом цикле жидкость разрыва и расклинивающий агент закачивают равными долями от общего объема.

Недостатками данного способа являются:

- во-первых, низкая эффективность ГРП, связанная с ограничением развития трещины в длину, так как ГРП проводится циклической закачкой жидкости разрыва и расклинивающего агента, поэтому при расклинивании трещины происходит вступление нефтекислотной эмульсии в реакцию с породой в приствольной зоне скважины. По этой причине невозможна доставка нефтекислотной эмульсии вглубь пласта, поэтому трещина не развивается в длину и при циклической закачке жидкости разрыва и расклинивающего агента равными долями от общего объема трещина лишь частично увеличивается в объеме;

- во-вторых, низкое качество раскрытия трещины, так как образовавшаяся трещина имеет низкую фильтрационную способность вследствие образования фильтрационной корки на стенках трещины из-за оседания в порах трещины, не разрушенной нефтекислотной эмульсией;

- в-третьих, низкое качество очистки призабойной зоны пласта от продуктов реакции. В итоге закольматированные поры пласта снижают нефтеотдачу после проведения ГРП;

- в-четвертых, применение сырой нефти создает высокую пожароопасность и требует большего технического и качественного контроля.

Наиболее близким по технической сущности и достигаемому результату является способ гидравлического разрыва карбонатного пласта в скважине (патент RU 2455478, МПК Е21B 43/26, опубл. в бюл. №19 от 10.07.2012 г.), включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны труб в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации и циклическую закачку в скважину гелеобразной жидкости разрыва, при этом перед проведением ГРП скважину заполняют технологической жидкостью на 0,2-0,4 объема ствола скважины, рассчитывают суммарный объем закачиваемой гелеобразной жидкости разрыва, причем гелеобразную жидкость разрыва закачивают равными порциями в 3-5 циклов с закачкой после них порций кислоты объемом 0,7-0,75 объема гелеобразной жидкости разрыва, по завершении последнего цикла закачки осуществляют продавку химических реагентов в трещину закачкой товарной нефти в полуторакратном объеме колонны труб с последующей выдержкой 1-2 ч, после чего удаляют продукты реакции кислоты с породой, снимают пакер и извлекают его с колонной труб из скважины.

Недостатками данного способа являются:

- во-первых, низкая проводимость трещины, обусловленная тем, что внутри трещины гелеобразная жидкость разрыва вступает в реакцию с кислотой, в результате чего выпадает в осадок полимер, который закупоривает поры пласта;

- во-вторых, низкая эффективность ГРП, связанная с тем, что состав кислоты и ее концентрация, применяемые при реализации способа с целью протравливания трещины, не учитывают величину проницаемости пласта. Это снижает качество протравливания трещины разрыва и величину ее раскрытия;

- в-третьих, низкая продуктивность скважины после проведения ГРП, так как невозможно произвести отклонения кислоты в менее проницаемые прослои пласта с целью образования сети разветвленных микротрещин;

- в-четвертых, при проведении ГРП используют товарную нефть, что создает высокую пожароопасность и оказывает негативное воздействие на экологию окружающей среды при разливе нефти на устье скважины.

Техническими задачами изобретения являются сохранение проводимости трещины и повышение эффективности ГРП, увеличение продуктивности скважины после проведения ГРП и исключение пожароопасности при проведении ГРП и отрицательного воздействия на экологию окружающей среды.

Поставленные задачи решаются способом гидравлического разрыва карбонатного пласта - ГРП в скважине, включающим перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты.

Новым является то, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м3, приготовленный из расчета 1,5 м3 на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м3 на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м3 на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.

На фиг. 1, 2 и 3 схематично и последовательно изображен предлагаемый способ.

Предлагаемый способ гидравлического разрыва карбонатного пласта осуществляется следующим образом.

Способ ГРП в скважине 1 (см. фиг. 1) включает перфорацию стенок скважины каналами 2 глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины 1. Далее в скважину 1 в зону гидроразрыва производят спуск колонны НКТ 3 с пакером 4 так, чтобы пакер 4 находился на 5-10 м выше кровли 5 пласта 6, подлежащего ГРП, после чего осуществляют герметизацию заколонного пространства, т.е. производят посадку проходного пакера любой известной конструкции. Перед проведением ГРП (см. фиг. 1) на устье скважины верхний конец колонны труб 3 обвязывают через насосные агрегаты 7, 8, 9 с соответствующими емкостями для гелеобразной жидкости 10, смеси кислот 11, кислотной эмульсии 12. На нагнетательных линиях насосных агрегатов 7, 8 и 9 установлены соответствующие задвижки 13, 14, 15.

В процессе проведения ГРП трещину разрыва формируют и развивают трехкратной циклической закачкой химических реагентов в пласт 6 (см фиг. 1, 2 и 3) по колонне НКТ 3.

Каждый цикл состоит из последовательной закачки гелеобразной жидкости разрыва, смеси кислот и кислотной эмульсии.

В качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3,0 кг/м3. Это означает, что 1,0 м3 пресной воды плотностью 1000 кг/м3 содержит 3,0 кг гелеобразователя любого известного производителя.

Перед проведением ГРП готовят в емкости необходимое количество химических реагентов из расчета, что в каждом цикле линейный гель закачивают порциями 1,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов, смесь кислот - 1 м3 на 1 м толщины пласта 6, разделенное на количество циклов, а кислотную эмульсию - 0,5 м3 на 1 м толщины пласта 6, разделенное на количество циклов. Например, толщина пласта 6, подлежащего проведению ГРП, составляет 6 м, учитывая вышеизложенное, предлагаемый процесс ГРП реализуют в три цикла, получают расчет необходимого количества химических реагентов для каждого цикла:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями по

1,5 м3/м⋅6 м/3 = 9,0 м3/3 = 3,0 м3;

- смесь кислот закачивают порциями по 1,0 м3/м⋅6,0 м/3 = 6,0 м3/3 = 2,0 м3;

- кислотную эмульсию закачивают порциями по 0,5 м3/м⋅6,0 м/3 = 3,0 м3/3=1,0 м3.

Далее подбирают концентрацию смеси кислот и кислотной эмульсии в зависимости от проницаемости пород пласта 6, которая была подобрана опытным путем.

Смесь кислот состоит из смеси соляной кислоты - HCI и фтороводородной кислоты - HF. Эффективность протравливания трещины ГРП и увеличения величины ее раскрытия зависит от концентрации смеси кислот, которая, в свою очередь, зависит от проницаемости пород пласта 6.

При проницаемости пород пласта свыше 100 мД концентрации:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислот с концентрацией (12%-ного водного раствора HCl, 3%-ного водного раствора HF) смешивают HCl - 0,12 м3; HF - 0,03 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 9:1. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 9:1 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,9 м3; углеводородный растворитель - 0,1 м3.

Могут применять кислоты любого производителя.

В качестве углеводородного растворителя применяют, например, дистиллят любого известного производителя.

При проницаемости пород пласта от 20 до 100 мД концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для смеси кислот. Для приготовления 1,0 м3 смеси кислоты с концентрацией (10%-ного водного раствора HCl, 2%-ного водного раствора HF) смешивают HCl - 0,10 м3; HF - 0,02 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1,0 м3 кислотной эмульсии при соотношении 8:2 (15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,8 м3; углеводородный растворитель - 0,2 м3.

При проницаемости пород пласта ниже 20 мД концентрации:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF. Смесь кислот готовят на устье скважины в емкости 11 для кислоты. Для приготовления 1,0 м3 смеси кислот с концентрацией (6%-ного водного раствора HCl, 1%-ного водного раствора HF) смешивают HCl - 0,06 м3; HF - 0,01 м3; вода - остальное;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 7:3. Кислотную эмульсию готовят на устье скважины в емкости 12 для кислотной эмульсии. Для приготовления 1 м3 кислотной эмульсии при соотношении 8:2 (смесь 15%-ного водного раствора HCl: углеводородный растворитель) смешивают HCl - 0,7 м3; углеводородный растворитель - 0,3 м3.

Повышается эффективность ГРП, так как состав кислоты и концентрации смеси кислот и кислотной эмульсии, применяемые для протравливания сформированной трещины при реализации способа, подбираются в зависимости от величины проницаемости породы пласта, что повышает качество протравливания трещины разрыва и увеличивает величину ее раскрытия. Например, проницаемость пород пласта составляет 120 мД при толщине пласта 6, равной 2 м, состоит из трех циклов закачки. Тогда концентрация химических реагентов:

- смеси кислот: 12%-ного водного раствора HCl и 3%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1.

Таким образом, в емкости для гелеобразной жидкости 10 готовят: 1,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 9,0 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят: 1,0 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 6,0 м3 смеси кислот следующей концентрации: 12%-ного водного раствора HCl и 3%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 0,5 м3/м⋅2 м (толщина пласта)⋅3 (количество циклов) = 3,0 м3 кислотной эмульсии при соотношении 9:1 (смесь 15%-ного водного раствора HCl: углеводородный растворитель), т.е. смешивают HCl - 0,9 м3⋅3 = 2,7 м3; углеводородный растворитель - 0,1⋅3 = 0,3 м3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот в концентрации 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии при соотношении 9:1 смеси 15%-ного раствора HCl с углеводородным растворителем.

В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 3,0 м3 линейного геля с концентрацией 3 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 2,0 м3 смеси кислот с концентрацией 12%-ного водного раствора HCl и 3%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,0 м3 кислотной эмульсии смеси 15%-ного водного раствора HCl:углеводородный растворитель при соотношении 9:1. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

Повышается продуктивность скважины за счет формирования первоначальной трещины с последующим ее развитием, протравливанием и созданием сети разветвленных трещин в менее проницаемых прослоях пласта, а именно:

- первый цикл состоит из формирования первоначальной трещины разрыва, протравливания первоначальной трещины разрыва и образования новых путем отклонения кислоты в менее проницаемые прослои пласта;

- второй и последующие циклы состоят из последовательного развития первоначальной трещины и их протравливания и образования новых путем отклонения кислоты в менее проницаемые прослои пласта.

По окончании третьего цикла производят продавку закачанных химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6,0 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13, при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование с породой пласта на 1-2 ч.

Применение вместо сырой нефти пресной воды для продавки химических реагентов из колонны НКТ 3 в пласт после завершения последнего цикла закачки исключает пожароопасность проведения ГРП и не оказывает отрицательное воздействие на экологию окружающей среды.

Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

В результате проведения ГРП сохраняется проводимость трещины, так как в качестве гелеобразной жидкости применяется линейный гель с концентрацией 3,0 кг/м3, что исключает химическую реакцию с кислотой и не закупоривает поры пласта, так как линейный гель не выпадает в осадок.

Выше приведен пример при проницаемости пород пласта свыше 100 мД.

Ниже рассмотрим два примера реализации способа при проницаемости пород пласта от 20 до 100 мД и ниже 20 мД.

1. Пример конкретного применения при проницаемости пород пласта 6 от 20 до 100 мД.

Проницаемость пород пласта составляет 70 мД, толщина пласта 6 равна 9 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3 кг/м3 закачивают порциями:

1,5 м3/м⋅9,0 м/3 = 13,5 м3/3 = 4,5 м3;

- смесь кислот закачивают порциями:

1,0 м3/м⋅9,0 м/3 = 9 м3/3 = 3 м3;

- кислотную эмульсию закачивают порциями:

0,5 м3/м⋅9,0 м/3 = 4,5 м3/3 = 1,5 м3.

Далее для проницаемости пород пласта 6, равной 70 мД, подбирают концентрации:

- смеси кислот: 10%-ного водного раствора HCl и 2%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 13,5 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 9 м3 смесь кислот с концентрацией: 10%-ного водного раствора HCl и 2%-ного водного раствора HF.

В емкости для кислотной эмульсии 12 готовят 4,5 м3 кислотной эмульсии с концентрацией: 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора и HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного водного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 4,5 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 3,0 м3 смеси кислот с концентрацией 10%-ного водного раствора HCl и 2%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 1,5 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 8:2. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку закачанных в колонну НТК 3 химических реагентов по колонне НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м3, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг .3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

2. Пример конкретного применения при проницаемости пород пласта ниже 20 мД.

Проницаемость пород пласта составляет 10 мД, толщина пласта 6 равна 4 м.

Предлагаемый процесс ГРП реализуют в три цикла.

Тогда в каждом цикле:

- линейный гель с концентрацией 3,0 кг/м3 закачивают порциями: 1,5 м3⋅4/3 = 6 м3/3 = 2,0 м3;

- смесь кислот закачивают порциями: 1,0 м3⋅4/3 =4 м3/3 = 1,33 м3;

- кислотную эмульсию закачивают порциями: 0,5 м3⋅4/3 = 2,0 м3/3 = 0,67 м3.

Далее для проницаемости пород пласта 6, равной 10 мД, подбирают концентрацию:

- смеси кислот: 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF;

- кислотной эмульсии: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Таким образом, в емкости для гелеобразной жидкости 10 готовят 6 м3 линейного геля с концентрацией 3,0 кг/м3.

В емкости для смеси кислот 11 готовят 4 м3 смеси кислот с концентрацией: 6%-ного водного раствора HCl и 1%-ного водного раствора HF.

В емкости для кислотной эмульсии готовят 2 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3.

Начинают процесс ГРП.

Первый цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16' (см. фиг. 1). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1,0%-ного водного раствора HF, протравливают и раскрывают трещину 16'. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии трещины 16' образуются новые разветвленные трещины 17', направленные в менее проницаемые прослои пласта 6.

Второй цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16'' (см. фиг. 2). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16'' образуются новые разветвленные трещины 17'', направленные в менее проницаемые прослои пласта 6.

Третий цикл

Открывают задвижку 13, задвижки 14 и 15 закрыты, запускают насосный агрегат 7 и из емкости 10 для гелеобразной жидкости разрыва с помощью насосного агрегата 7 по колонне НКТ 3 закачивают в пласт 2,0 м3 линейного геля с концентрацией 3,0 кг/м3. Формируют в пласте 6 первоначальную трещину разрыва 16''' (см. фиг. 3). Далее закрывают задвижку 13, открывают задвижку 14 при закрытой задвижке 15, запускают насосный агрегат 8 и из емкости 11 для смеси кислот с помощью насосного агрегата 8 по колонне НКТ 3 закачивают в пласт 1,33 м3 смеси кислот с концентрацией 6%-ного водного раствора HCl и 1%-ного водного раствора HF, протравливают и раскрывают трещину 16'''. Затем закрывают задвижку 14, открывают задвижку 15 при закрытой задвижке 13, запускают насосный агрегат 9 и из емкости 12 для кислотной эмульсии с помощью насосного агрегата 9 по колонне НКТ 3 закачивают в пласт 6 0,67 м3 кислотной эмульсии с концентрацией: смесь 15%-ного раствора HCl с углеводородным растворителем при соотношении 7:3. В результате воздействия кислотной эмульсии из трещины 16''' образуются новые разветвленные трещины 17''', направленные в менее проницаемые прослои пласта 6.

По окончании третьего цикла производят продавку химических реагентов из колонны НКТ 3 в пласт 6 пресной водой, например, плотностью 1000 кг/м3 в полуторакратном объеме колонны НКТ 3, например в объеме 6 м, из автоемкости 18 с помощью насосного агрегата 7 (см. фиг. 3) через открытую задвижку 13 при закрытых задвижках 14 и 15. После чего скважина 1 остается на реагирование кислоты с породой пласта 6 на 1-2 ч. Далее удаляют продукты реакции кислоты с породой любым известным способом, например свабированием (на фиг. 1, 2 и 3 не показано), по колонне НКТ 3 (см. фиг. 3) в двукратном объеме ствола скважины 1, например в объеме 30,0 м3. После чего срывают пакер 4 и извлекают его с колонной НКТ 3 из скважины 1. Процесс ГРП окончен.

Предлагаемый способ ГРП в скважине позволяет:

- сохранить проводимость трещин после проведения ГРП;

- повысить эффективность проведения ГРП;

- увеличить продуктивность скважины после проведения ГРП;

- исключить пожароопасность при проведения ГРП и негативное воздействие на экологию окружающей среды.

Способ гидравлического разрыва карбонатного пласта - ГРП в скважине, включающий перфорацию стенок скважины в необходимом интервале скважины каналами глубиной не менее протяженности зоны концентрации напряжений в породах от ствола скважины, спуск колонны насосно-компрессорных труб - НКТ в зону ГРП с герметизацией межтрубного пространства пакером выше интервала перфорации, циклическую закачку и продавку в скважину гелеобразной жидкости разрыва и кислоты, отличающийся тем, что предварительно определяют проницаемость и толщину пласта, в качестве гелеобразной жидкости разрыва применяют линейный гель с концентрацией 3 кг/м, приготовленный из расчета 1,5 м на 1 м толщины пласта, а в качестве кислоты - смесь соляной и фтороводородной кислот, приготовленную из расчета 1 м на 1 м толщины пласта, дополнительно закачивают смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем, приготовленную из расчета 0,5 м на 1 м толщины пласта, приготовленные растворы делят на три равные порции и осуществляют последовательную закачку в три цикла, причем при проницаемости свыше 100 мД закачивают смесь 12%-ного водного раствора соляной и 3%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 9:1, при проницаемости от 20 до 100 мД закачивают смесь 10%-ного водного раствора соляной и 2%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 8:2, при проницаемости ниже 20 мД закачивают смесь 6%-ного водного раствора соляной и 1%-ного водного раствора фтороводородной кислот, а смесь 15%-ного водного раствора соляной кислоты с углеводородным растворителем при соотношении 7:3, по завершении последнего цикла закачки продавку осуществляют пресной водой.
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Способ гидравлического разрыва карбонатного пласта
Источник поступления информации: Роспатент

Showing 151-160 of 584 items.
13.01.2017
№217.015.6cfd

Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к области эксплуатации и ремонта скважин и изоляции притока пластовых вод в горизонтальные скважины. Техническим результатом изобретения является повышение качества водоизоляционных работ - ВИР, возможность оценки...
Тип: Изобретение
Номер охранного документа: 0002597220
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6da3

Способ разработки залежи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Технический результат - повышение эффективности прогревания залежи, увеличение охвата залежи прогреванием, повышение объемов отбора нефти и битума,...
Тип: Изобретение
Номер охранного документа: 0002597303
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7741

Устройство для раздельной обработки пластов в скважине

Изобретение относится к нефтяной промышленности и может быть применено для раздельной обработки пластов в скважине, в том числе при проведении поинтервального гидравлического разрыва пласта. Устройство включает пакер, разобщитель, содержащий ствол с радиальными каналами, золотник, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002599651
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7749

Способ эксплуатации скважины

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации скважины, добывающей вязкую нефтяную эмульсию. Способ эксплуатации скважины включает оборудование скважины колонной насосно-компрессорных труб (НКТ) с штанговым глубинным насосом, фильтром, кабелем...
Тип: Изобретение
Номер охранного документа: 0002599653
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7895

Способ ремонтно-изоляционных работ в скважине (варианты)

Предложение относится к нефтедобывающей промышленности, в частности, к ремонтно-изоляционным работ в скважинах с применением тампонажных составов. Технический результат предложенного изобретения заключается в повышение эффективности ремонтно-изоляционных работ в скважине за счет использования...
Тип: Изобретение
Номер охранного документа: 0002599154
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78dc

Способ обработки призабойной зоны горизонтального ствола скважины, вскрывшей карбонатный коллектор

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатный коллектор. Технический результат - повышение эффективности обработки. По способу определяют давления поглощения жидкости в открытом...
Тип: Изобретение
Номер охранного документа: 0002599155
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7948

Способ поинтервальной обработки призабойной зоны горизонтального ствола скважины

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатную породу. Технический результат - повышение эффективности обработки. По способу определяют давление поглощения жидкости в открытом...
Тип: Изобретение
Номер охранного документа: 0002599156
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8156

Способ очистки призабойной зоны пласта нагнетательной скважины после проведения гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности, а именно к способам очистки призабойных зон низкопроницаемых пластов в нагнетательных скважинах после проведения в них гидравлического разрыва пласта (ГРП). После проведения ГРП в скважину спускают колонну НКТ с пакером, производят замену...
Тип: Изобретение
Номер охранного документа: 0002601879
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.816c

Состав для кислотной обработки призабойной зоны пласта

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности воздействия на пласт путем значительного снижения скорости реакции кислотного состава с породой пласта, увеличение охвата пласта обработкой, увеличение текущей нефтеотдачи пласта, исключение...
Тип: Изобретение
Номер охранного документа: 0002601887
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8180

Перепускной клапан для скважинного гидродомкрата

Изобретение относится к бурению и ремонту нефтяных и газовых скважин, в частности предназначено для изоляции зон осложнения бурения скважин профильными перекрывателями. Перепускной клапан для скважинного гидродомкрата, расположенный выше расширяющей головки и ниже гидродомкрата, содержит полую...
Тип: Изобретение
Номер охранного документа: 0002601886
Дата охранного документа: 10.11.2016
Showing 151-160 of 400 items.
13.01.2017
№217.015.6da3

Способ разработки залежи высоковязкой нефти и битума

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Технический результат - повышение эффективности прогревания залежи, увеличение охвата залежи прогреванием, повышение объемов отбора нефти и битума,...
Тип: Изобретение
Номер охранного документа: 0002597303
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7741

Устройство для раздельной обработки пластов в скважине

Изобретение относится к нефтяной промышленности и может быть применено для раздельной обработки пластов в скважине, в том числе при проведении поинтервального гидравлического разрыва пласта. Устройство включает пакер, разобщитель, содержащий ствол с радиальными каналами, золотник, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002599651
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7749

Способ эксплуатации скважины

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации скважины, добывающей вязкую нефтяную эмульсию. Способ эксплуатации скважины включает оборудование скважины колонной насосно-компрессорных труб (НКТ) с штанговым глубинным насосом, фильтром, кабелем...
Тип: Изобретение
Номер охранного документа: 0002599653
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7895

Способ ремонтно-изоляционных работ в скважине (варианты)

Предложение относится к нефтедобывающей промышленности, в частности, к ремонтно-изоляционным работ в скважинах с применением тампонажных составов. Технический результат предложенного изобретения заключается в повышение эффективности ремонтно-изоляционных работ в скважине за счет использования...
Тип: Изобретение
Номер охранного документа: 0002599154
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.78dc

Способ обработки призабойной зоны горизонтального ствола скважины, вскрывшей карбонатный коллектор

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатный коллектор. Технический результат - повышение эффективности обработки. По способу определяют давления поглощения жидкости в открытом...
Тип: Изобретение
Номер охранного документа: 0002599155
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7948

Способ поинтервальной обработки призабойной зоны горизонтального ствола скважины

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны горизонтальных стволов скважин, вскрывших карбонатную породу. Технический результат - повышение эффективности обработки. По способу определяют давление поглощения жидкости в открытом...
Тип: Изобретение
Номер охранного документа: 0002599156
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8156

Способ очистки призабойной зоны пласта нагнетательной скважины после проведения гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности, а именно к способам очистки призабойных зон низкопроницаемых пластов в нагнетательных скважинах после проведения в них гидравлического разрыва пласта (ГРП). После проведения ГРП в скважину спускают колонну НКТ с пакером, производят замену...
Тип: Изобретение
Номер охранного документа: 0002601879
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.816c

Состав для кислотной обработки призабойной зоны пласта

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности воздействия на пласт путем значительного снижения скорости реакции кислотного состава с породой пласта, увеличение охвата пласта обработкой, увеличение текущей нефтеотдачи пласта, исключение...
Тип: Изобретение
Номер охранного документа: 0002601887
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8180

Перепускной клапан для скважинного гидродомкрата

Изобретение относится к бурению и ремонту нефтяных и газовых скважин, в частности предназначено для изоляции зон осложнения бурения скважин профильными перекрывателями. Перепускной клапан для скважинного гидродомкрата, расположенный выше расширяющей головки и ниже гидродомкрата, содержит полую...
Тип: Изобретение
Номер охранного документа: 0002601886
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.81b8

Устройство направляющее для входа в боковой ствол

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для входа в боковые стволы многоствольной скважины. Устройство включает направляющую часть с косым срезом, боковое отверстие с соплом для прохода жидкости со стороны среза и цилиндрическую часть с выдвижным...
Тип: Изобретение
Номер охранного документа: 0002601882
Дата охранного документа: 10.11.2016
+ добавить свой РИД