×
04.04.2018
218.016.338a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002645692
Дата охранного документа
27.02.2018
Аннотация: Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Способ предусматривает осуществление измерений забойной температуры и забойного давления в скважине посредством датчиков, установленных на перфорационной колонне ниже всех интервалов перфорации, а также посредством датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации. Измерения температуры и забойного давления осуществляют до проведения перфорации скважины и после перфорации до тех пор, пока температура добываемого флюида не вернется к первоначальной температуре пласта. Оценивают суммарный дебит скважины и рассчитывают избыточную тепловую энергию добываемого флюида для всех датчиков температуры, установленных на перфорационной колонне выше интервалов перфорации, после чего определяют дебит отдельных интервалов перфорации на основе рассчитанных избыточных тепловых энергий добываемого флюида и известного количества перфорационных зарядов в каждом интервале перфорации. 5 ил.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации.

Определение профиля притока из многозонной скважины является важной задачей. Определение дебита отдельных интервалов перфорации необходимо, в частности, для принятия решения о необходимости проведения кислотной обработки, повторной перфорации и т.д..

Определение профиля притока обычно проводят во время промыслового каротажа добывающей скважины с помощью механических расходомеров (см., например, Hill, A.D.,. Production Logging - Theoretical and Interpretive Elements, SPE Monograph Series., 2002, стр. 61). Основными недостатками этого способа являются необходимость проведения специального каротажа скважины (в дополнение к операциям, проводимым в скважине во время перфорации и опробования скважины) и сложность определения дебитов малопродуктивных пластов.

Вклад различных интервалов перфорации может быть оценен также с помощью данных температурного каротажа добывающей скважины (см. Череменский Г.А., Прикладная геотермия, М. Недра, 224 стр., стр. №181) или из анализа нестационарных температурных данных, полученных при изменении дебита скважины (см. Чекалюк, Е.Б., Термодинамика нефтяного пласта, Москва, 1965, 234 стр., стр. №88, или Ramazanov, A., Valiullin, R.А., Shako, V., Pimenov, V., Sadretdinov, A., Fedorov, V., Belov, K., 2010. Thermal Modeling for Characterization of Near Wellbore Zone and Zonal Allocation, SPE 136256-MS). К недостаткам этих способов можно отнести необходимость анализа относительно небольших температурных сигналов и необходимость проведения специальных каротажей скважины или установки в скважине специального оборудования.

В соответствии с предлагаемым способом осуществляют измерения забойной температуры и забойного давления в скважине посредством датчиков, установленных на перфорационной колонне ниже всех интервалов перфорации, а также датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации.

Измерения температуры и забойного давления осуществляют до проведения перфорации скважины и после перфорации до тех пор, пока температура добываемого флюида не вернется к первоначальной температуре пласта. Оценивают суммарный дебит скважины и рассчитывают избыточную тепловую энергию добываемого флюида для всех датчиков температуры, установленных на перфорационной колонне выше интервалов перфорации, после чего определяют дебит отдельных интервалов перфорации на основе рассчитанных избыточных тепловых энергий добываемого флюида и известного количества перфорационных зарядов в каждом интервале перфорации.

В соответствии с одним из вариантов осуществления изобретения суммарный дебит скважины определяют посредством измерения расхода на поверхности или в скважине.

В соответствии с другим вариантом осуществления изобретения суммарный дебит скважины определяют посредством расчета расхода по изменению забойного давления.

В соответствии с еще одним вариантом осуществления изобретения суммарный дебит скважины определяют посредством расчета расхода с использованием забойного давления и численного моделирования многопластовой добывающей скважины.

Изобретение поясняется чертежами, где на фиг. 1 показана схема скважины с двумя интервалами перфорации, на фиг. 2 приведен пример забойного давления P0(t) и температур добываемого флюида T1(t) и T2(t) выше интервалов перфорации, на фиг. 3 показан дебит скважины, рассчитанный для давления, приведенного на Фиг. 2, на фиг. 4 приведена полная избыточная тепловая энергия добываемого флюида (рассчитанная по температуре Т2, сплошная линия) и соответствующая энергия, рассчитанная по температуре T2, на фиг. 5 показан алгоритм определения профиля притока с использованием численного моделирования многопластовой добывающей скважины.

Данное изобретение предлагает определять профиль притока в скважинах с несколькими интервалами перфорации с использованием результатов измерения скважинного давления и результатов измерения температуры с помощью датчиков, установленных на перфорационной колонне. Температуру надо измерять выше каждого интервала перфорации и на забое скважины, ниже всех интервалов перфорации.

Способ предусматривает измерение забойного давления P0(t) и забойной температуры T0(t), которая определяет среднюю температуру пород в рассматриваемом интервале глубин. Измерения осуществляют с помощью датчиков, установленных на перфорационной колонне в скважине ниже всех интервалов перфорации, а также измерения температуры Ti(t) добываемого флюида (i=1,2,..,m, m есть число интервалов перфорации) с помощью датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации.

Измерения давления P0(t) и температуры Ti(t) (i=0,1,..,m) начинают до перфорации (что позволяет определить пластовое давление и геотермальную температуру и продолжать измерение в течение нескольких часов после перфорации, до тех пор, пока температура добываемого флюида, нагретого благодаря энергии перфорационного взрыва, не вернется к первоначальной температуре пласта). При взрыве перфорационных зарядов часть энергии идет на испарение скважинного флюида и на энергию кумулятивной струи, но большая часть энергии идет на нагрев перфорационной колонны, обсадной трубы и породы вблизи скважины. Нагрев добываемого флюида происходит при его контакте с этими телами.

Затем оценивают суммарный дебит скважины Q(t), используя один из следующих способов:

- измерение расхода на поверхности или в скважине,

- расчет расхода по изменению забойного давления P0(t) (если добываемый флюид не достигает поверхности),

- расчет расхода с использованием забойного давления P0(t) и численного моделирования многопластовой добывающей скважины.

Параметры (проницаемости и скин факторы), определяющие продуктивность отдельных пластов, принимаются равными средним значениям, которые определяются в результате традиционного гидродинамического исследования скважины.

Рассчитывают избыточную тепловую энергию добываемого флюида для каждого температурного датчика

где Tf - средняя температура пород в рассматриваемом интервале глубин (определяемая T0(t) и практически равная ей), - объемная теплоемкость флюида.

Дебит отдельных интервалов перфорации рассчитывают по величинам Ei и известным количествам перфорационных зарядов в каждом перфорационном интервале.

Рассмотрим случай малодебитной скважины, когда в первые часы после перфорации нет излива добываемого флюида на поверхность.

Схема скважины с перфорационной колонной, пакером и двумя интервалами перфорации приведена на Фиг. 1, где показаны пакер - 1, клапан - 2, датчик температуры Т2 - 3, датчик температуры Т1 - 4, датчики забойной температуры и давления Т0, Р0 - 5, вторая зона притока - 6, первая зона притока - 7, второй интервал перфорации - 8, первый интервал перфорации - 9.

На Фиг. 2 приведен синтетический пример забойного давления P0(t) и температур добываемого флюида T1(t) и Т2(t) выше интервалов перфорации. Толстая кривая соответствует забойному давлению, которое равно ~50 бар перед перфорацией и увеличивается до пластового давления (около 85 бар) во время добычи в соответствии с тем, что поднимается уровень флюида в добывающей трубе. В данном случае принято, что интервалы перфорации имеют одинаковую протяженность и одинаковое количество перфорационных зарядов.

Если нет излива добываемого флюида на поверхность, суммарный дебит скважины Q(t) может быть рассчитан по забойному давлению P0(t):

где rt - внутренний радиус трубы, g=9.81 - м/с2 ускорение свободного падения, - плотность флюида.

На Фиг. 3 показан дебит скважины, рассчитанный по этой формуле для давления, приведенного на Фиг. 2 (для =850 кг/м3, rt=0.038 м). Рассчитанный дебит далее используют для определения профиля притока.

В случае, если суммарный дебит скважины измерялся в скважине или на поверхности, этот дебит непосредственно используется для определения профиля притока.

Графики температуры T1 и Т2 (Фиг. 2) показывают, что сразу после перфорации температура потока добываемого флюида значительно больше (в данном случае на ~20 С), чем температура пород Tf (точки на Фиг. 2). Эта температура определяется нагревом скважинного флюида при взрыве и нагревом пластового флюида при его контакте с горячей породой, обсадной колонной и перфорационной колонной. Следует отметить, что температура породы может быть оценена по результатам измерения температуры в скважине перед перфорацией.

Поток пластового флюида охлаждает околоскважинную породу, обсадную и перфорационную колонну и через некоторое время (tp=5÷10 час) после перфорации измеренные в скважине температуры приближаются к невозмущенной температуре пород (Фиг. 2). Это означает, что тепловая часть Еm энергии взрыва перфорационных зарядов трансформировалась в избыточную тепловую энергию добытого флюида.

В данном случае m=2 и Em≡E2. Используя температуру Т2, измеренную датчиком, который расположен выше всех интервалов перфорации, и дебит скважины Q(t), эту энергию можно рассчитать по формуле:

Сплошная линия на Фиг. 4 показывает избыточную тепловую энергию добываемого флюида для данных, приведенных на Фиг. 2. Видно, что через ~3 часа после перфорации Е2 достигает своего наибольшего значения Е2≈16.5 МДж.

Полная энергия перфорационного взрыва, рассчитанная по удельной энергии взрыва и массе взрывчатого вещества, в рассматриваемом случае составляет Ее≈28 МДж. Это означает, что приблизительно δ=60% от энергии взрыва было преобразовано в тепловую энергию породы, обсадной и перфорационной колонны:

Em=δ⋅Ee.

Оставшаяся часть энергии взрыва (около 40%) была затрачена на разрушение породы, генерацию ударных волн в породе и в скважине или была быстро вынесена за пределы рассматриваемого интервала с газообразными продуктами взрыва.

Предлагаемая в данном изобретении процедура расчета дебита отдельных интервалов перфорации основана на следующих предположениях:

- величина δ одинакова для разных интервалов перфорации,

- флюиды, поступающие в скважину из разных интервалов перфорации, имеют одинаковые объемные теплоемкости,

- расстояние между интервалами перфорации невелико и можно пренебречь потерями тепловой энергии флюида в окружающие породы между интервалами перфорации,

- продолжительность добычи после перфорации и дебиты скважины достаточно велики, так что измеряемая датчиками температура флюида снижается до температуры невозмущенных пород.

Пусть m - число интервалов перфорации,

Qi есть дебит из iго интервала, - суммарный дебит скважины,

есть дебит скважины из нижних i перфорационных интервалов, отнесенный к суммарному дебиту скважины (γm=1),

ni есть число перфорационных зарядов в iм интервале перфорации,

есть полное число перфорационных зарядов в скважине,

есть число зарядов в нижних i интервалах перфорации, отнесенное к полному число перфорационных зарядов в скважине (bm=1),

Тi(t) есть температура флюида, измеренная датчиком температуры, расположенным выше iго интервала перфорации.

Дебит отдельных интервалов перфорации (на начальном этапе значения γi) рассчитывают с использованием закона сохранения энергии, который записывают для всех интервалов (i=1,2,..m):

или

где i=1,2,..m,

Искомые относительные продуктивности уi (yi=Qi/Q, ) отдельных перфорационных интервалов рассчитывают по формулам:

В рассматриваемом случае двух интервалов перфорации (m=2) и одинакового числа перфорационных зарядов в интервалах (b1=0.5) рассчитанная энергия Е1(t) показана на Фиг. 4 пунктирной линией.

Расчетное значение безразмерного дебита γ1(t) выходит на приблизительно постоянное значение через ~3 часа после перфорации: γ1=y1≈0.7.

В общем случае нестационарный дебит скважины Q(t) может быть рассчитан с использованием измеренного забойного давления P0(t) и численной модели многопластовой добывающей скважины, в которую в качестве свободных параметров входят проницаемости {ki} и скины {si} продуктивных пластов. Значения этих параметров могут быть найдены с использованием итерационной процедуры, алгоритм которой приведен на Фиг. 5.

Первоначальный набор параметров, характеризующих продуктивные интервалы {ki, si}, определяется с помощью традиционного гидродинамического исследования (ГДИ) скважины в предположении, что все пласты имеют одни и те же свойства. Для этих параметров с использованием измеренного забойного давления P0(t) рассчитывают общий дебит скважины Q(t) и относительные дебиты отдельных пластов {yki}. Затем, используя найденный дебит Q(t) и температуры {Ti(t)}, измеренными датчиками, расположенными выше продуктивных пластов, с использованием описанной выше процедуры находят относительные дебиты и сравнивают два полученных набора чисел, характеризующих профиль притока, например, рассчитывают величину невязки S:

Если S меньше заданной величины невязки ε: S<ε, то данный набор параметров принимается в качестве решения задачи. В противном случае значения параметров {ki,si} изменяют, и вычисления продолжают до тех пор, пока векторы {yki} и с заданной точностью не совпадут.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
Источник поступления информации: Роспатент

Showing 51-60 of 112 items.
20.09.2015
№216.013.7bf2

Способ характеристики неоднородности и определения теплопроводности материалов (варианты) и устройство для его осуществления

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов...
Тип: Изобретение
Номер охранного документа: 0002563327
Дата охранного документа: 20.09.2015
27.10.2015
№216.013.8a88

Система и способ выполнения операции интенсификации

Группа изобретений относится к вариантам способа выполнения операции интенсификации. Способ содержит получение объединенных данных о месте расположения скважины (например, геомеханические, геологические и/или геофизические свойства подземной формации и/или геометрические свойства механических...
Тип: Изобретение
Номер охранного документа: 0002567067
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9662

Устройство для каротажного электромагнитного зондирования (варианты)

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы,...
Тип: Изобретение
Номер охранного документа: 0002570118
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a3fa

Способ определения скорости распространения акустических волн в пористой среде

Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды,...
Тип: Изобретение
Номер охранного документа: 0002573620
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f67

Способ определения пористости образца породы

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение...
Тип: Изобретение
Номер охранного документа: 0002580174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f70

Способ размещения источников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возбуждения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580155
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fad

Способ акустического каротажа

Изобретение относится к области геофизики и может быть использовано в процессе геофизических исследований скважин. Согласно заявленному способу в скважине размещают с возможностью перемещения акустический каротажный прибор, содержащий по меньшей мере один источник направленных акустических...
Тип: Изобретение
Номер охранного документа: 0002580209
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.320c

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для неразрушающего анализа образцов пористых материалов. Сущность изобретения заключается в том, что производят начальное насыщение образца пористой среды электропроводящей жидкостью, или совместно электропроводящей жидкостью и неэлектропроводящим флюидом, или только...
Тип: Изобретение
Номер охранного документа: 0002580177
Дата охранного документа: 10.04.2016
Showing 51-60 of 81 items.
10.05.2015
№216.013.4a76

Способ определения смачиваемости

Изобретение относится к области исследования смачиваемости поверхностей и может найти применение в различных отраслях промышленности, например в нефтегазовой, химической, лакокрасочной и пищевой. Для определения смачиваемости поверхности исследуемого материала по меньшей мере один образец...
Тип: Изобретение
Номер охранного документа: 0002550569
Дата охранного документа: 10.05.2015
27.06.2015
№216.013.5a69

Способ повышения точности измерений расхода многофазной смеси в трубопроводе

Предложенное изобретение относится к процедуре контроля многофазных смесей при их транспортировке по трубопроводу, в процессе которого исключают процесс пробкообразования. Предложенный способ повышения точности измерений расхода многофазной смеси в трубопроводе заключается в том, что определяют...
Тип: Изобретение
Номер охранного документа: 0002554686
Дата охранного документа: 27.06.2015
20.09.2015
№216.013.7bf2

Способ характеристики неоднородности и определения теплопроводности материалов (варианты) и устройство для его осуществления

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов...
Тип: Изобретение
Номер охранного документа: 0002563327
Дата охранного документа: 20.09.2015
27.10.2015
№216.013.8a88

Система и способ выполнения операции интенсификации

Группа изобретений относится к вариантам способа выполнения операции интенсификации. Способ содержит получение объединенных данных о месте расположения скважины (например, геомеханические, геологические и/или геофизические свойства подземной формации и/или геометрические свойства механических...
Тип: Изобретение
Номер охранного документа: 0002567067
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9662

Устройство для каротажного электромагнитного зондирования (варианты)

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы,...
Тип: Изобретение
Номер охранного документа: 0002570118
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a3fa

Способ определения скорости распространения акустических волн в пористой среде

Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды,...
Тип: Изобретение
Номер охранного документа: 0002573620
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f67

Способ определения пористости образца породы

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение...
Тип: Изобретение
Номер охранного документа: 0002580174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f70

Способ размещения источников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возбуждения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580155
Дата охранного документа: 10.04.2016
+ добавить свой РИД