×
04.04.2018
218.016.338a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002645692
Дата охранного документа
27.02.2018
Аннотация: Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Способ предусматривает осуществление измерений забойной температуры и забойного давления в скважине посредством датчиков, установленных на перфорационной колонне ниже всех интервалов перфорации, а также посредством датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации. Измерения температуры и забойного давления осуществляют до проведения перфорации скважины и после перфорации до тех пор, пока температура добываемого флюида не вернется к первоначальной температуре пласта. Оценивают суммарный дебит скважины и рассчитывают избыточную тепловую энергию добываемого флюида для всех датчиков температуры, установленных на перфорационной колонне выше интервалов перфорации, после чего определяют дебит отдельных интервалов перфорации на основе рассчитанных избыточных тепловых энергий добываемого флюида и известного количества перфорационных зарядов в каждом интервале перфорации. 5 ил.

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации.

Определение профиля притока из многозонной скважины является важной задачей. Определение дебита отдельных интервалов перфорации необходимо, в частности, для принятия решения о необходимости проведения кислотной обработки, повторной перфорации и т.д..

Определение профиля притока обычно проводят во время промыслового каротажа добывающей скважины с помощью механических расходомеров (см., например, Hill, A.D.,. Production Logging - Theoretical and Interpretive Elements, SPE Monograph Series., 2002, стр. 61). Основными недостатками этого способа являются необходимость проведения специального каротажа скважины (в дополнение к операциям, проводимым в скважине во время перфорации и опробования скважины) и сложность определения дебитов малопродуктивных пластов.

Вклад различных интервалов перфорации может быть оценен также с помощью данных температурного каротажа добывающей скважины (см. Череменский Г.А., Прикладная геотермия, М. Недра, 224 стр., стр. №181) или из анализа нестационарных температурных данных, полученных при изменении дебита скважины (см. Чекалюк, Е.Б., Термодинамика нефтяного пласта, Москва, 1965, 234 стр., стр. №88, или Ramazanov, A., Valiullin, R.А., Shako, V., Pimenov, V., Sadretdinov, A., Fedorov, V., Belov, K., 2010. Thermal Modeling for Characterization of Near Wellbore Zone and Zonal Allocation, SPE 136256-MS). К недостаткам этих способов можно отнести необходимость анализа относительно небольших температурных сигналов и необходимость проведения специальных каротажей скважины или установки в скважине специального оборудования.

В соответствии с предлагаемым способом осуществляют измерения забойной температуры и забойного давления в скважине посредством датчиков, установленных на перфорационной колонне ниже всех интервалов перфорации, а также датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации.

Измерения температуры и забойного давления осуществляют до проведения перфорации скважины и после перфорации до тех пор, пока температура добываемого флюида не вернется к первоначальной температуре пласта. Оценивают суммарный дебит скважины и рассчитывают избыточную тепловую энергию добываемого флюида для всех датчиков температуры, установленных на перфорационной колонне выше интервалов перфорации, после чего определяют дебит отдельных интервалов перфорации на основе рассчитанных избыточных тепловых энергий добываемого флюида и известного количества перфорационных зарядов в каждом интервале перфорации.

В соответствии с одним из вариантов осуществления изобретения суммарный дебит скважины определяют посредством измерения расхода на поверхности или в скважине.

В соответствии с другим вариантом осуществления изобретения суммарный дебит скважины определяют посредством расчета расхода по изменению забойного давления.

В соответствии с еще одним вариантом осуществления изобретения суммарный дебит скважины определяют посредством расчета расхода с использованием забойного давления и численного моделирования многопластовой добывающей скважины.

Изобретение поясняется чертежами, где на фиг. 1 показана схема скважины с двумя интервалами перфорации, на фиг. 2 приведен пример забойного давления P0(t) и температур добываемого флюида T1(t) и T2(t) выше интервалов перфорации, на фиг. 3 показан дебит скважины, рассчитанный для давления, приведенного на Фиг. 2, на фиг. 4 приведена полная избыточная тепловая энергия добываемого флюида (рассчитанная по температуре Т2, сплошная линия) и соответствующая энергия, рассчитанная по температуре T2, на фиг. 5 показан алгоритм определения профиля притока с использованием численного моделирования многопластовой добывающей скважины.

Данное изобретение предлагает определять профиль притока в скважинах с несколькими интервалами перфорации с использованием результатов измерения скважинного давления и результатов измерения температуры с помощью датчиков, установленных на перфорационной колонне. Температуру надо измерять выше каждого интервала перфорации и на забое скважины, ниже всех интервалов перфорации.

Способ предусматривает измерение забойного давления P0(t) и забойной температуры T0(t), которая определяет среднюю температуру пород в рассматриваемом интервале глубин. Измерения осуществляют с помощью датчиков, установленных на перфорационной колонне в скважине ниже всех интервалов перфорации, а также измерения температуры Ti(t) добываемого флюида (i=1,2,..,m, m есть число интервалов перфорации) с помощью датчиков температуры, установленных на перфорационной колонне выше каждого интервала перфорации.

Измерения давления P0(t) и температуры Ti(t) (i=0,1,..,m) начинают до перфорации (что позволяет определить пластовое давление и геотермальную температуру и продолжать измерение в течение нескольких часов после перфорации, до тех пор, пока температура добываемого флюида, нагретого благодаря энергии перфорационного взрыва, не вернется к первоначальной температуре пласта). При взрыве перфорационных зарядов часть энергии идет на испарение скважинного флюида и на энергию кумулятивной струи, но большая часть энергии идет на нагрев перфорационной колонны, обсадной трубы и породы вблизи скважины. Нагрев добываемого флюида происходит при его контакте с этими телами.

Затем оценивают суммарный дебит скважины Q(t), используя один из следующих способов:

- измерение расхода на поверхности или в скважине,

- расчет расхода по изменению забойного давления P0(t) (если добываемый флюид не достигает поверхности),

- расчет расхода с использованием забойного давления P0(t) и численного моделирования многопластовой добывающей скважины.

Параметры (проницаемости и скин факторы), определяющие продуктивность отдельных пластов, принимаются равными средним значениям, которые определяются в результате традиционного гидродинамического исследования скважины.

Рассчитывают избыточную тепловую энергию добываемого флюида для каждого температурного датчика

где Tf - средняя температура пород в рассматриваемом интервале глубин (определяемая T0(t) и практически равная ей), - объемная теплоемкость флюида.

Дебит отдельных интервалов перфорации рассчитывают по величинам Ei и известным количествам перфорационных зарядов в каждом перфорационном интервале.

Рассмотрим случай малодебитной скважины, когда в первые часы после перфорации нет излива добываемого флюида на поверхность.

Схема скважины с перфорационной колонной, пакером и двумя интервалами перфорации приведена на Фиг. 1, где показаны пакер - 1, клапан - 2, датчик температуры Т2 - 3, датчик температуры Т1 - 4, датчики забойной температуры и давления Т0, Р0 - 5, вторая зона притока - 6, первая зона притока - 7, второй интервал перфорации - 8, первый интервал перфорации - 9.

На Фиг. 2 приведен синтетический пример забойного давления P0(t) и температур добываемого флюида T1(t) и Т2(t) выше интервалов перфорации. Толстая кривая соответствует забойному давлению, которое равно ~50 бар перед перфорацией и увеличивается до пластового давления (около 85 бар) во время добычи в соответствии с тем, что поднимается уровень флюида в добывающей трубе. В данном случае принято, что интервалы перфорации имеют одинаковую протяженность и одинаковое количество перфорационных зарядов.

Если нет излива добываемого флюида на поверхность, суммарный дебит скважины Q(t) может быть рассчитан по забойному давлению P0(t):

где rt - внутренний радиус трубы, g=9.81 - м/с2 ускорение свободного падения, - плотность флюида.

На Фиг. 3 показан дебит скважины, рассчитанный по этой формуле для давления, приведенного на Фиг. 2 (для =850 кг/м3, rt=0.038 м). Рассчитанный дебит далее используют для определения профиля притока.

В случае, если суммарный дебит скважины измерялся в скважине или на поверхности, этот дебит непосредственно используется для определения профиля притока.

Графики температуры T1 и Т2 (Фиг. 2) показывают, что сразу после перфорации температура потока добываемого флюида значительно больше (в данном случае на ~20 С), чем температура пород Tf (точки на Фиг. 2). Эта температура определяется нагревом скважинного флюида при взрыве и нагревом пластового флюида при его контакте с горячей породой, обсадной колонной и перфорационной колонной. Следует отметить, что температура породы может быть оценена по результатам измерения температуры в скважине перед перфорацией.

Поток пластового флюида охлаждает околоскважинную породу, обсадную и перфорационную колонну и через некоторое время (tp=5÷10 час) после перфорации измеренные в скважине температуры приближаются к невозмущенной температуре пород (Фиг. 2). Это означает, что тепловая часть Еm энергии взрыва перфорационных зарядов трансформировалась в избыточную тепловую энергию добытого флюида.

В данном случае m=2 и Em≡E2. Используя температуру Т2, измеренную датчиком, который расположен выше всех интервалов перфорации, и дебит скважины Q(t), эту энергию можно рассчитать по формуле:

Сплошная линия на Фиг. 4 показывает избыточную тепловую энергию добываемого флюида для данных, приведенных на Фиг. 2. Видно, что через ~3 часа после перфорации Е2 достигает своего наибольшего значения Е2≈16.5 МДж.

Полная энергия перфорационного взрыва, рассчитанная по удельной энергии взрыва и массе взрывчатого вещества, в рассматриваемом случае составляет Ее≈28 МДж. Это означает, что приблизительно δ=60% от энергии взрыва было преобразовано в тепловую энергию породы, обсадной и перфорационной колонны:

Em=δ⋅Ee.

Оставшаяся часть энергии взрыва (около 40%) была затрачена на разрушение породы, генерацию ударных волн в породе и в скважине или была быстро вынесена за пределы рассматриваемого интервала с газообразными продуктами взрыва.

Предлагаемая в данном изобретении процедура расчета дебита отдельных интервалов перфорации основана на следующих предположениях:

- величина δ одинакова для разных интервалов перфорации,

- флюиды, поступающие в скважину из разных интервалов перфорации, имеют одинаковые объемные теплоемкости,

- расстояние между интервалами перфорации невелико и можно пренебречь потерями тепловой энергии флюида в окружающие породы между интервалами перфорации,

- продолжительность добычи после перфорации и дебиты скважины достаточно велики, так что измеряемая датчиками температура флюида снижается до температуры невозмущенных пород.

Пусть m - число интервалов перфорации,

Qi есть дебит из iго интервала, - суммарный дебит скважины,

есть дебит скважины из нижних i перфорационных интервалов, отнесенный к суммарному дебиту скважины (γm=1),

ni есть число перфорационных зарядов в iм интервале перфорации,

есть полное число перфорационных зарядов в скважине,

есть число зарядов в нижних i интервалах перфорации, отнесенное к полному число перфорационных зарядов в скважине (bm=1),

Тi(t) есть температура флюида, измеренная датчиком температуры, расположенным выше iго интервала перфорации.

Дебит отдельных интервалов перфорации (на начальном этапе значения γi) рассчитывают с использованием закона сохранения энергии, который записывают для всех интервалов (i=1,2,..m):

или

где i=1,2,..m,

Искомые относительные продуктивности уi (yi=Qi/Q, ) отдельных перфорационных интервалов рассчитывают по формулам:

В рассматриваемом случае двух интервалов перфорации (m=2) и одинакового числа перфорационных зарядов в интервалах (b1=0.5) рассчитанная энергия Е1(t) показана на Фиг. 4 пунктирной линией.

Расчетное значение безразмерного дебита γ1(t) выходит на приблизительно постоянное значение через ~3 часа после перфорации: γ1=y1≈0.7.

В общем случае нестационарный дебит скважины Q(t) может быть рассчитан с использованием измеренного забойного давления P0(t) и численной модели многопластовой добывающей скважины, в которую в качестве свободных параметров входят проницаемости {ki} и скины {si} продуктивных пластов. Значения этих параметров могут быть найдены с использованием итерационной процедуры, алгоритм которой приведен на Фиг. 5.

Первоначальный набор параметров, характеризующих продуктивные интервалы {ki, si}, определяется с помощью традиционного гидродинамического исследования (ГДИ) скважины в предположении, что все пласты имеют одни и те же свойства. Для этих параметров с использованием измеренного забойного давления P0(t) рассчитывают общий дебит скважины Q(t) и относительные дебиты отдельных пластов {yki}. Затем, используя найденный дебит Q(t) и температуры {Ti(t)}, измеренными датчиками, расположенными выше продуктивных пластов, с использованием описанной выше процедуры находят относительные дебиты и сравнивают два полученных набора чисел, характеризующих профиль притока, например, рассчитывают величину невязки S:

Если S меньше заданной величины невязки ε: S<ε, то данный набор параметров принимается в качестве решения задачи. В противном случае значения параметров {ki,si} изменяют, и вычисления продолжают до тех пор, пока векторы {yki} и с заданной точностью не совпадут.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОФИЛЯ ПРИТОКА ФЛЮИДА В МНОГОПЛАСТОВОЙ СКВАЖИНЕ
Источник поступления информации: Роспатент

Showing 101-110 of 112 items.
03.07.2019
№219.017.a417

Распознание расклинивающего агента с помощью мобильного устройства

Изобретение относится к анализу размеров и формы частиц. Техническим результатом является быстрый и репрезентативный анализ размеров и формы частиц. Способ анализа размеров и формы частиц, используемых в скважинных операциях, содержащий: получение изображения подложки, включающего эталон...
Тип: Изобретение
Номер охранного документа: 0002693201
Дата охранного документа: 01.07.2019
19.03.2020
№220.018.0d23

Способ вывода на режим скважины, пробуренной в естественно трещиноватом пласте

Изобретение относится к области технологий подготовки скважины, пробуренной в естественно трещиноватом пласте, к выводу на режим, в частности к оптимизации параметров, оказывающих непосредственное влияние на повышение продуктивности скважины после проведения гидравлического разрыва пласта...
Тип: Изобретение
Номер охранного документа: 0002717019
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0edc

Способ определения физических характеристик однородной среды и ее границ

Изобретение относится к области геофизики и может быть использовано для определения границ однородной среды при обработке сейсмических данных. Согласно заявленному способу осуществляют регистрацию гармонической волны, представляющей собой колебание физической величины вдоль одного...
Тип: Изобретение
Номер охранного документа: 0002717162
Дата охранного документа: 18.03.2020
07.06.2020
№220.018.2527

Способ определения межфазного натяжения между двумя флюидами

Изобретение относится к способам определения межфазного натяжения (МН) между двумя флюидами. Техническим результатом является повышение точности определения МН между двумя флюидами. В соответствии с изобретением предварительно определяют плотность флюидов при заданных давлении и температуре и...
Тип: Изобретение
Номер охранного документа: 0002722896
Дата охранного документа: 04.06.2020
31.07.2020
№220.018.3923

Способ определения работающих интервалов глубин нефтяных и газовых пластов

Изобретение относится к промыслово-геофизическим исследованиям, а именно, к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения работающих интервалов глубин нефтяных и газовых пластов. В соответствии со способом...
Тип: Изобретение
Номер охранного документа: 0002728123
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3952

Способ определения распределения объемных долей флюидов по стволу скважины

Изобретение относится к промыслово-геофизическим исследованиям и предназначено для определения объемных долей флюидов по стволу скважины. Техническим результатом заявленного изобретения является повышение точности, достоверности и надежности определения объемных долей флюидов по стволу...
Тип: Изобретение
Номер охранного документа: 0002728119
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.396d

Способ определения характеристик фильтрационного потока в околоскважинной зоне пласта

Изобретение относится к промыслово-геофизическим исследованиям, а именно к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения характеристик фильтрационных потоков жидкостей и газа в околоскважинной зоне пласта, а также...
Тип: Изобретение
Номер охранного документа: 0002728121
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
23.04.2023
№223.018.51d5

Способ прогнозирования гидроразрыва пласта, способ гидроразрыва пласта, способы прогнозирования рисков гидроразрыва пласта

Изобретение относится к нефтегазовой промышленности и может найти применение при стимулировании подземного пласта с помощью операции гидравлического разрыва (ГРП) пласта, в частности, при использовании методов математического моделирования, которые позволяют делать прогноз геометрии трещины ГРП...
Тип: Изобретение
Номер охранного документа: 0002730576
Дата охранного документа: 24.08.2020
20.05.2023
№223.018.67b5

Способ и система измерения краевого угла смачивания

Использование: для измерения краевого угла смачивания для капли флюида на поверхности образца материала в окружении другого флюида. Сущность изобретения заключается в том, что образец материала, имеющий плоскую поверхность, помещают в рентгенопрозрачную ячейку, установленную на регулируемой...
Тип: Изобретение
Номер охранного документа: 0002794567
Дата охранного документа: 21.04.2023
Showing 81-81 of 81 items.
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
+ добавить свой РИД