×
04.04.2018
218.016.3370

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ОБРАЗЕЦ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам и устройствам для нанесения износостойкого покрытия. Введение частиц порошкового материала в распылительное сопло. Частицы порошкового материала покрытия ускоряют в распылительном сопле с газом в направлении к поверхности образца. Сцепление частиц порошкового материала между собой и подложкой создают путем введения электромагнитного излучения в место попадания струи газа с частицами порошкового материала на поверхность образца. Для генерирования электромагнитного излучения используют лазер, мощность которого устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца. В процессе нанесения покрытия фокус пятна излучения лазера на поверхности образца смещают относительно фокуса подаваемых частиц порошкового материала для обеспечения внедрения подаваемых частиц порошкового материала в расплавленный порошковый материал поверхности образца. В одном из вариантов осуществления способа перед нанесением покрытия фокус пятна лазерного излучения лазера на поверхности образца устанавливают со смещением относительно фокуса подаваемого порошкового материала для обеспечения внедрения подаваемых частиц порошкового материала в расплавленный порошковый материал поверхности образца. В процессе нанесения покрытия дополнительно нагревают поверхность образца, до температуры достаточной для снятия остаточных напряжений. Устройство для нанесения износостойкого покрытия на образец содержит рабочую камеру, распылительное сопло и лазерный блок. Лазерный блок и распылительное сопло установлены с возможностью взаимного перемещения оси симметрии фокусирующих линз лазерной оптики лазерного блока и оси симметрии распылительного сопла. Лазерный блок выбран с мощностью лазерного излучения, достаточной для оплавления порошкового материала и перемешивания его с поверхностью образца. Устройство для нанесения износостойкого покрытия может содержать электромагнитный индуктор для нагревания образца. Обмотка электромагнитного индуктора выполнена с возможностью установки в нее образца. Обеспечивается получение износостойкого покрытия с высокой адгезией. 6 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к способам и устройствам нанесения износостойкого покрытия на образец с высокой твердостью посредством сверхзвуковой лазерной наплавки.

Известен способ ремонта поверхностей деталей посредством холодного газодинамического напыления. Поверхность, подвергаемую ремонту, обрабатывают струей холодного газа, содержащей металлические частицы, схожие по составу с материалом покрытия, в результате чего образуется слой. Повышение энергии в струе холодного газа, если металлические частицы подвергать воздействию источника излучения, например, лазера (Патент DE №60009823 Т2 B23P 6/00, 2004.08.12).

Известно устройство, содержащее лазерный блок и распылительное сопло, а в качестве подаваемого материала используется проволока, однако при этом оси симметрии сопла и оптической системы линз лазера не пересекаются (Патент US №3310423, 21.03.1967).

Известен способ, при котором получаемый слой методом термического напыления дополнительно обрабатывается лазером, для получения окончательного состава слоя (Патент JPH №0578812 A, 30.03.1993).

Известно устройство холодного напыления, содержащее распылительное сопло для подачи порошкового материала и лазерный блок, предназначенный для интенсификации процесса напыления (Патент US №8021715 B2, 20.09.2011).

Известен способ, при котором воздействие на формирование структуры покрытия производится замедленным охлаждением нанесенного плазменным напылением покрытия посредством лазера. Осуществление способа достигается поддержанием напыленных частиц некоторое время при температуре плавления (Патент DE №19740205 B4, 25.11.2004).

Известно устройство, содержащее распылительное сопло, а также дополнительное зеркало с возможностью изменения угла наклона положения лазера (Патент DE №19740205 B4, 25.11.2004).

Наиболее близким к предлагаемому способу нанесения покрытия на образец, по четырем его вариантам, является способ холодного газодинамического напыления, описанный в патенте RU №2394940 C2, С23С 24/08, опубликованном 20.07.2010 г., который заключается в том, что нанесение покрытия на образец осуществляется посредством холодного газодинамического напыления. Согласно способу частицы материала покрытия ускоряют посредством их введения в распылительное сопло с холодным газом в направлении к снабжаемой покрытием поверхности образца. При этом на частицы в сопле в струе газа подают количество энергии, не достаточное для обеспечения постоянного сцепления частиц на поверхности, но достаточное для обеспечения предварительного сцепления частиц. Причем постоянное сцепление частиц создают путем введения электромагнитного излучения в место попадания струи холодного газа с частицами на поверхность. После чего оставшиеся, предварительно сцепленные частицы удаляют с поверхности.

Наиболее близким к предлагаемому устройству нанесения покрытия на образец является устройство лазерной обработки образца, описанное в патенте RU №2394940 C2, C23C 24/08, опубликованном 20.07.2010 г., устройство содержит рабочую камеру, в которой расположено распылительное сопло, для подачи газопорошковой смеси на поверхность обрабатываемого образца, внутри камеры расположен лазер, предназначенный для интенсификации процесса наплавки.

Недостатком способа и устройства по прототипам является то, что после нанесения покрытия лазер обеспечивает только точечное воздействие на покрытие, при этом отсутствует равномерное остывание покрытия, а также отсутствует перемешивание напыляемого материала с материалом подложки, что не позволит добиться высоких значений адгезионной прочности, а также отсутствует возможность формирования комплексного покрытия, включающего в себя матрицу из расплава порошкового материала, насыщенную частицами того же порошкового материала.

Технической проблемой является получение комбинированного покрытия с высокой адгезией к поверхности обрабатываемого образца, матрицей которого является расплав наплавляемого порошкового материала на основе никеля, а упрочняющими элементами внедрения и центрами кристаллизации являются частицы исходного порошкового материала.

Технический результат предлагаемого способа нанесения покрытия на образец по его четырем вариантам и устройства нанесения покрытия на образец по его двум вариантам заключается в получении комбинированного покрытия с высокой адгезией к поверхности обрабатываемого образца, матрицей которого является расплав наплавляемого порошкового материала на основе никеля, а упрочняющими элементами внедрения и центрами кристаллизации являются частицы исходного порошкового материала.

Технический результат в способе нанесения покрытия на образец по его первому варианту, при котором частицы материала покрытия ускоряют посредством введения частиц в распылительное сопло с газом в направлении к поверхности образца, при этом сцепление частиц между собой и подложкой создают путем введения электромагнитного излучения в место попадания струи газа с частицами на поверхность образца, а для генерирования электромагнитного излучения применяют лазер, достигается тем, что мощность лазера устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца, в процессе нанесения покрытия фокус пятна лазерного излучения лазера на поверхности образца смещают относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца.

Технический результат в способе нанесения покрытия на образец по его второму варианту, при котором частицы материала покрытия ускоряют посредством введения частиц в распылительное сопло с газом в направлении к поверхности образца, при этом сцепление частиц между собой и подложкой создают путем введения электромагнитного излучения в место попадания струи газа с частицами на поверхность образца, а для генерирования электромагнитного излучения применяют лазер, достигается тем, что мощность лазера устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца, в процессе нанесения покрытия фокус пятна лазерного излучения лазера на поверхности образца устанавливают со смещением относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца.

Технический результат в способе нанесения покрытия на образец по его третьему варианту, при котором частицы материала покрытия ускоряют посредством введения частиц в распылительное сопло с газом в направлении к поверхности образца, при этом сцепление частиц между собой и подложкой создают путем введения электромагнитного излучения в место попадания струи газа с частицами на поверхность образца, а для генерирования электромагнитного излучения применяют лазер, достигается тем, что мощность лазера устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца, в процессе нанесения покрытия фокус пятна лазерного излучения лазера на поверхности образца смещают относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца, а в процессе нанесения покрытия дополнительно нагревают поверхность образца, до температуры, достаточной для снятия остаточных напряжений.

Технический результат в способе нанесения покрытия на образец по его четвертому варианту, при котором частицы материала покрытия ускоряют посредством введения частиц в распылительное сопло с газом в направлении к поверхности образца, при этом сцепление частиц между собой и подложкой создают путем введения электромагнитного излучения в место попадания струи газа с частицами на поверхность образца, а для генерирования электромагнитного излучения применяют лазер, достигается тем, что мощность лазера устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца, в процессе нанесения покрытия фокус пятна лазерного излучения лазера на поверхности образца устанавливают со смещением относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца, а в процессе нанесения покрытия дополнительно нагревают поверхность образца, до температуры, достаточной для снятия остаточных напряжений.

Технический результат в устройстве для нанесения покрытия на образец по его первому варианту, содержащем рабочую камеру, распылительное сопло, лазерный блок, достигается тем, что лазерный блок и распылительное сопло установлены с возможностью взаимного перемещения оси симметрии фокусирующих линз лазерной оптики лазерного блока и оси симметрии распылительного сопла, лазерный блок выбран с мощностью лазерного излучения, достаточной для оплавления порошкового материала и перемешивания его с поверхностью образца.

Технический результат в устройстве для нанесения покрытия на образец по его второму варианту, содержащем рабочую камеру, распылительное сопло, лазерный блок, достигается тем, что содержит электромагнитный индуктор для нагревания образца, а распылительное сопло и лазерный блок установлены с возможностью взаимного перемещения оси симметрии фокусирующих линз лазерной оптики лазерного блока и оси симметрии распылительного сопла и лазерный блок выбран с мощностью лазерного излучения, достаточной для оплавления порошкового материала и перемешивания его с поверхностью образца.

Обмотка электромагнитного индуктора может быть выполнена с возможностью установки в нее образца.

На фиг. 1 схематически изображено устройство для реализации предлагаемого способа нанесения покрытий на образец по его первому и второму варианту способа, схематически изображено предлагаемое устройство по его первому варианту, на фиг. 2 схематически изображено устройство по его второму варианту для реализации предлагаемого способа нанесения покрытий на образец по его третьему и четвертому варианту способа, на фиг. 3 изображена стадия нанесения покрытия, при которой частица устремляется к поверхности образца, а лазерный луч воздействует на место ее контакта с поверхностью детали, на фиг. 4 изображена стадия формирования покрытия, при которой произошло внедрение частицы, ее оплавление и перемешивание с поверхностью детали, на фиг. 5 изображена стадия формирования покрытия при которой частица 13 внедрилась в расплав, полученный от частицы. На фиг. 6 представлен пример покрытия системы NiCrBSi, сформированного способом лазерной сверхзвуковой наплавки. На фиг. 7 показан срез частицы, внедренной в расплав покрытия на поверхности образца, на фиг 8 показано распределение химических элементов по глубине нанесенного покрытия.

Устройство для нанесения покрытий на образец по его первому варианту (фиг. 1) содержит рабочую камеру 1, в которой расположено распылительное сопло 2, для подачи газопорошковой смеси на поверхность обрабатываемого образца 3. Внутри камеры 1 расположен лазер 4, предназначенный для интенсификации процесса наплавки. Инертный газ подается в распылительное сопло 2 с помощью патрубка 5. Порошковый материал подается в распылительное сопло 2 с помощью патрубка 6. Газопорошковая смесь 7, выходящая из сопла 2, и лазерный луч 8, устремлены к поверхности 9 образца 3. Лазерный луч 8 генерируется с помощью лазерного блока 10. Лазерный блок 10 выбран с мощностью лазерного излучения, достаточной для оплавления порошкового материала и перемешивания его с поверхностью образца 3. При этом лазерный блок 10 и распылительное сопло 2 установлены с возможностью взаимного перемещения оси симметрии фокусирующих линз лазерной оптики лазерного блока 10 и оси симметрии распылительного сопла 2. Лазерный блок 10 - это стандартный электронный блок позволяющий управлять мощностью лазерного излучения лазера 4, соединенного с лазерным блоком 10. Перемещение может осуществляться, например, вручную или механически с использованием механизмов зубчатой или червячной передачи. Газопорошковая смесь 7 состоит из отдельных частичек 11, подвергаемых расплавлению и частичек 12, подвергаемых внедрению в расплав, полученный в результате расплавления частичек 11. Система приводов обеспечивает передвижение образца 3 относительно распылительного сопла 2. Обмотка электромагнитного индуктора 13 выполнена с возможностью установки в нее образца 3.

Устройство для нанесения покрытий на образец по его второму варианту (фиг. 2) содержит рабочую камеру 1, в которой расположено распылительное сопло 2, для подачи газопорошковой смеси на поверхность обрабатываемого образца 3. Внутри камеры 1 расположен лазер 4 предназначенный для интенсификации процесса наплавки. Инертный газ подается в распылительное сопло 2 с помощью патрубка 5. Порошковый материал подается в распылительное сопло 2 с помощью патрубка 6. Газопорошковая смесь 7, выходящая из сопла 2, и лазерный луч 8 устремлены к поверхности образца 9. Лазерный луч 8 генерируется с помощью лазерного блока 10. Лазерный блок 10 выбран с мощностью лазерного излучения, достаточной для оплавления порошкового материала и перемешивания его с поверхностью образца 3. Внутри камеры 1 расположен электромагнитный индуктор 13 для плавного охлаждения получаемого покрытия и повышения кинетической энергии подаваемой газопорошковой смеси 7 на поверхности образца 3. При этом лазерный блок 10 и распылительное сопло 2 установлены с возможностью взаимного перемещения оси симметрии фокусирующих линз лазерной оптики лазерного блока 10 и оси симметрии распылительного сопла 2, например вручную или механически с использованием механизмов зубчатой или червячной передачи. Газопорошковая смесь 7 состоит из отдельных частичек 11, подвергаемых расплавлению, и частичек 12, подвергаемых внедрению в расплав, полученный в результате расплавления частичек 11. Система приводов обеспечивает передвижение образца относительно сопла. Обмотка электромагнитного индуктора 13 выполнена с возможностью установки в нее образца 3.

В примере конкретной реализации нанесение покрытия осуществлялось следующим образом.

Рассмотрим осуществление предлагаемого способа нанесения покрытия на образец по его первому варианту. Рассмотрим процесс формирования покрытия с использованием предлагаемого устройства по его первому варианту. Включают питание рабочей камеры 1. Газ под высоким давлением 30 бар выходит из сосуда высокого давления (например, RU №2252378 С1, 20.05.2005, Бюл. 14) подается через патрубок 5 в распылительное сопло 2. Через патрубок 6 в распылительное сопло 2 подается порошковый материал. В результате два потока смешиваются и поступают в распылительное сопло 2, где и разгоняются до сверхзвуковых скоростей. Газопорошковая смесь 7 устремляется к поверхности образца 3, на которую одновременно воздействует лазерный луч 8 лазера 4. Одновременно с этим производится перемещение образца 3 с помощью системы приводов. Мощность лазерного излучения устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца 3. В процессе нанесения покрытия на образец фокус пятна лазерного излучения лазера смещают относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца 3, например, за счет изменения угла наклона распылительного сопла 2. Нанесение покрытия может быть осуществлено путем периодически повторяющегося смещения фокусов лазерного пятна лазера 4 и газопорошковой смеси 7 друг относительно друга, на поверхности образца 3 при этом в процессе смещения пятен фокусов пятна фокусов могут периодически совпадать.

В результате нанесения формируется покрытие 9 на поверхности образца 3.

Рассмотрим осуществление предлагаемого способа нанесения покрытия на образец по его второму варианту. Рассмотрим процесс формирования покрытия с использованием предлагаемого устройства по его первому варианту. Включают питание рабочей камеры 1. Газ под высоким давлением 30 бар выходит из сосуда высокого давления (например, RU №2252378 С1, 20.05.2005, Бюл. 14), подается через патрубок 5 в распылительное сопло 2. Через патрубок 6 в распылительное сопло 2 подается порошковый материал. В результате два потока смешиваются и поступают в распылительное сопло 2, где и разгоняются до сверхзвуковых скоростей. Газопорошковая смесь 7 устремляется к поверхности образца 3, на которую одновременно воздействует лазерный луч 8 лазера 4. Одновременно с этим производится перемещение образца 3 с помощью системы приводов. Мощность лазерного излучения устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца 3. В процессе нанесения покрытия на образец фокус пятна лазерного излучения лазера устанавливают смещенным относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца 3, например, за счет изменения угла наклона распылительного сопла 2. Перед нанесением покрытия на образец 3 фокус пятна лазерного излучения лазера 4 и фокус газопорошковой смеси 7 смещены друг относительно друга с перекрытием 50%, при этом фокусы оставались неподвижными в процессе нанесения покрытия друг относительно друга, а перемещение образца 3 осуществлялось с помощью системы приводов по линейной траектории. Технический результат будет достигнут при любой величине смещения фокусов. В результате нанесения формируется покрытие 9 на поверхности образца 3.

Рассмотрим осуществление предлагаемого способа нанесения покрытия на образец по его третьему варианту. Рассмотрим процесс формирования покрытия с использованием предлагаемого устройства по его второму варианту. Включают питание рабочей камеры 1. Газ под высоким давлением 30 бар выходит из сосуда высокого давления (например, RU №2252378 С1, 20.05.2005, Бюл. 14), подается через патрубок 5 в распылительное сопло 2. Через патрубок 6 в распылительное сопло 2 подается порошковый материал. В результате два потока смешиваются и поступают в сопло 2, где и разгоняются до сверхзвуковых скоростей. Газопорошковая смесь 7 устремляется к поверхности образца 3, на которую одновременно воздействует лазерный луч 8 лазера 4. Одновременно с этим производится перемещение образца 3 с помощью системы приводов. Мощность лазерного излучения устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца 3. Включают витки электромагнитного индуктора 13, который повышает кинетическую энергию частиц порошкового материала, путем дополнительного нагрева. Нанесение покрытия может быть осуществлено путем периодически повторяющегося смещения фокусов лазерного пятна лазера 4 и газопорошковой смеси 7 друг относительно друга, на поверхности образца 3 при этом в процессе смещения пятен фокусов, пятна фокусов могут периодически совпадать. В результате нанесения формируется покрытие на поверхности 9 образца, 3 которое, не дожидаясь остывания, подвергается подогреву с помощью электромагнитного индуктора 13 и тем самым достигается плавное остывание покрытия и снятие остаточных напряжений на поверхности образца 3.

Рассмотрим осуществление предлагаемого способа нанесения покрытия на образец по его четвертому варианту. Рассмотрим процесс формирования покрытия с использованием предлагаемого устройства по его второму варианту. Включают питание рабочей камеры 1. Газ под высоким давлением 30 бар выходит из сосуда высокого давления (например, RU №2252378 С1, 20.05.2005, Бюл. 14), подается через патрубок 5 в распылительное сопло 2. Через патрубок 6 в распылительное сопло 2 подается порошковый материал. В результате два потока смешиваются и поступают в сопло 2, где и разгоняются до сверхзвуковых скоростей. Газопорошковая смесь 7 устремляется к поверхности образца 3, на которую одновременно воздействует лазерный луч 8 лазера 4. Одновременно с этим производится перемещение образца 3 с помощью системы приводов. Мощность лазерного излучения устанавливают достаточной для оплавления порошкового материала и его перемешивания с материалом поверхности образца 3. Включают витки электромагнитного индуктора 13, который повышает кинетическую энергию частиц порошкового материала, путем дополнительного нагрева. В процессе нанесения покрытия на образец фокус пятна лазерного излучения лазера устанавливают смещенным относительно фокуса подаваемого порошкового материала так, чтобы обеспечивалось внедрение порошковых частиц подаваемого материала в расплавленный порошковый материал на поверхности образца 3, например, за счет изменения угла наклона распылительного сопла 2. Перед нанесением покрытия на образец 3 фокус пятна лазерного излучения лазера 4 и фокус газопорошковой смеси 7 смещены друг относительно друга с перекрытием 50%, при этом фокусы оставались неподвижными в процессе нанесения покрытия друг относительно друга, а перемещение образца 3 осуществлялось с помощью системы приводов по линейной траектории. Технический результат будет достигнут при любой величине смещения фокусов. В результате нанесения формируется покрытие 9 на поверхности образца 3.

В результате нанесения формируется покрытие на поверхности 9 образца 3, которое, не дожидаясь остывания, подвергается подогреву с помощью электромагнитного индуктора 13 и тем самым достигается плавное остывание покрытия и снятие остаточных напряжений на поверхности образца.

При этом в примере конкретной реализации способа нанесения покрытия на образец по его первому и третьему вариантам и устройства нанесения покрытия на образец по его первому и второму вариантам на примере NiCrBSi покрытия использовали порошок с размером частиц 50-100 мкм. Микротвердость порошка 160 HV0,1. Расстояние от поверхности образца до среза сопла составляет 40 мм. Оптимальные параметры процесса для получения единичного трека покрытия следующие: давление азота 3 МПа; температура азота 550°С, мощность лазера 2,2 кВт; скорость перемещения лазера 4 относительно подложки 30 мм/с; расход порошка 15 г/мин; температура в пятне контакта 1300°С; диаметр лазерного пятна 6 мм. При этом длительность процесса напыления единичного трека составляла 20 с. Степень оплавления и внедрения порошкового материала фиксируется с помощью микроскопа и оценивается по трансформации структуры порошкового материала. При этом производилось смещение фокуса пятна лазерного излучения лазера 7 относительно фокуса газопорошковой струи 8.

В примере конкретной реализации способа нанесения покрытия на образец по его второму и четвертому вариантам и устройства нанесения покрытия на образец по его первому и второму вариантам на примере NiCrBSi покрытия использовали порошок с размером частиц 50-100 мкм. Микротвердость порошка 160 HV0,1. Расстояние от поверхности образца до среза сопла составляет 40 мм. Оптимальные параметры процесса для получения единичного трека покрытия следующие: давление азота 3 МПа; температура азота 550°С, мощность лазера 2,2 кВт; скорость перемещения лазера 4 относительно подложки 30 мм/с; расход порошка 15 г/мин; температура в пятне контакта 1300°С; диаметр лазерного пятна 6 мм. При этом длительность процесса напыления единичного трека составляла 20 с. Степень оплавления и внедрения порошкового материала фиксируется с помощью микроскопа и оценивается по трансформации структуры порошкового материала. При этом положение фокуса пятна лазерного излучения лазера 7 относительно фокуса газопорошковой струи 8 оставалось постоянным. Технический результат будет достигнут при любой величине смещения фокусов.

На первом этапе фиг. 3 предлагаемых вариантов способа и устройства нанесения покрытия на образец порошковая частица 11, вылетая со сверхзвуковой скоростью из сопла 2, влетала в зону контакта лазерного излучения с поверхностью образца 3. На втором этапе фиг. 4 происходило расплавление порошковой частицы 11, ее значительная деформация, а также частичное перемешивание с оплавленной поверхностью образца 3.

По третьему и четвертому варианту предлагаемого способа и второму варианту предлагаемого устройства магнитные поля, создаваемые электромагнитным индуктором 9, увеличивают кинетическую энергию подаваемых частиц на поверхность образца 3. По четырем вариантам предлагаемого способа, а также первому и второму варианту предлагаемого устройства на третьем этапе фиг. 5, в жидкую ванну расплава буквально «впечатывалась» следующая за ней частичка 12 того же порошкового материала, практически без деформации, кристаллизовалась за счет высокоскоростного отвода тепла вглубь металла. Скорость кристаллизации матрицы превышала критическую, и поэтому в ней не успевали выделяться крупные твердые карбидные фазы, а упрочняющими элементами внедрения являлись нерасплавившиеся порошковые твердые частички 12 с высокодисперсной структурой. При этом температура в зоне наплавки должна быть в интервале от 100 до 1300 °С. По третьему и четвертому варианту предлагаемого способа и второму варианту предлагаемого устройства медленное охлаждение поверхности 9 образца 3 с целью предотвращения его растрескивания достигалось посредством постепенного отключения витков электромагнитного индуктора 13.

По четырем вариантам предлагаемого способа и предлагаемого устройства по двум вариантам, на фиг. 6 представлена микроструктура полученного покрытия с формированием частиц того же материала, что и напыляемого металлического порошка, а также срез внедренной частицы показан на фиг. 7. При этом образуется новая структура, которая состоит из расплавленной матрицы порошкового материала и частиц внедрения того же материала.

На Фиг. 8 показан химический состав полученного покрытия с помощью сверхзвуковой лазерной наплавки, подтверждающий перемешивание матрицы и покрытия, что позволит добиваться повышенных значений адгезионной прочности.

Введенные отличительные признаки в предлагаемый способ нанесения покрытия на образец по его четырем вариантам и введенные отличительные признаки в устройство для нанесения покрытия на образец по его двум вариантам позволяют получить комбинированное покрытие с высокой адгезией к поверхности обрабатываемого образца, матрицей которого является расплав наплавляемого порошкового материала на основе никеля, а упрочняющими элементами внедрения и центрами кристаллизации являются частицы исходного порошкового материала.

Применение предлагаемого способа по четырем вариантам и устройства, по двум вариантам по сравнению с прототипом, позволит повысить качество получаемого покрытия на образце за счет повышения адгезионной прочности между покрытием и обрабатываемой поверхностью путем перемешивания наплавляемого материала и подложки, а также позволит повысить износостойкость нанесенного материала путем создания упрочняющих частиц в покрытии из напыляемого порошкового материала, что достигается путем смещения фокуса пятна лазерного излучения лазера относительно фокуса газопорошковой смеси и медленным охлаждением покрытия с помощью электромагнитного индуктора.


СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ОБРАЗЕЦ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ОБРАЗЕЦ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ОБРАЗЕЦ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ОБРАЗЕЦ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 111-120 of 130 items.
21.11.2019
№219.017.e477

Вентильный электропривод

Изобретение относится к области электротехники и может быть использовано в электромеханических системах на производстве, на транспорте и строительстве. Технический результат заключается в повышении точности регулирования частоты вращения. Вентильный электропривод имеет синхронный двигатель с...
Тип: Изобретение
Номер охранного документа: 0002706416
Дата охранного документа: 19.11.2019
26.11.2019
№219.017.e6b7

Турбореактивный двухконтурный двигатель

Турбореактивный двухконтурный двигатель содержит промежуточный теплообменник, первичный контур которого связан на выходе с последним каскадом компрессора. Последний каскад, включающий центробежный компрессор, камеру сгорания двигателя и центростремительную турбину, расположен вдоль оси...
Тип: Изобретение
Номер охранного документа: 0002707105
Дата охранного документа: 22.11.2019
01.12.2019
№219.017.e854

Магнитный редуктор

Изобретение относится к электротехнике, а именно к бесконтактным магнитным редукторам, и может быть использовано в качестве передаточного устройства в механических системах с большим ресурсом работы при ударных нагрузках. Технический результат заключается в возможности изменения передаточного...
Тип: Изобретение
Номер охранного документа: 0002707731
Дата охранного документа: 29.11.2019
10.12.2019
№219.017.ebbc

Синхронный электродвигатель для винта вертолета

Изобретение относится к области электротехники и может быть использовано в качестве компактного привода несущего винта вертолета. Технический результат – улучшение массогабаритных показателей. Синхронный электродвигатель содержит корпус 1 и подшипниковые щиты 2, 3. На них установлены...
Тип: Изобретение
Номер охранного документа: 0002708382
Дата охранного документа: 06.12.2019
18.12.2019
№219.017.ee8d

Способ изготовления труб в форме усеченного конуса и устройство для осуществления способа

Изобретение относится к энергетическому, химическому и нефтехимическому машиностроению, в частности к производству труб для машиностроения в форме усеченного конуса. Заготовку цилиндрической формы протягивают через круглое отверстие, образованное между внутренней стенкой волоки и оправкой....
Тип: Изобретение
Номер охранного документа: 0002709076
Дата охранного документа: 13.12.2019
01.02.2020
№220.017.fc21

Злаковый батончик для питания работающих с амино- и нитросоединениями бензола

Изобретение относится к пищевой промышленности. Предложенный злаковый батончик для питания работающих с амино- и нитросоединениями бензола включает следующие ингредиенты: овсяные отруби, клетчатку пшенично-кедровую, цельносмолотую кукурузную муку, полбяную муку, люцерну молотую, плоды...
Тип: Изобретение
Номер охранного документа: 0002712697
Дата охранного документа: 30.01.2020
05.02.2020
№220.017.fdfb

Стенд для испытания гасителей крутильных колебаний

Изобретение относится к машиностроению, в частности к стендам для испытания гасителей крутильных колебаний, установленных на коленчатые валы двигателей внутреннего сгорания. Устройство содержит шлицевой вал, установленный на подшипниках качения, на котором установлены, по меньшей мере, четыре...
Тип: Изобретение
Номер охранного документа: 0002712937
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff94

Электропривод

Изобретение относится к электротехнике, а именно к электроприводам с эталонными моделями и ПИД-регуляторами, и может быть использовано в прецизионных электромеханических системах. Электропривод содержит основной электропривод с входным сумматором (1), первый вход которого является входом...
Тип: Изобретение
Номер охранного документа: 0002713185
Дата охранного документа: 04.02.2020
05.03.2020
№220.018.08e2

Учебно-демонстрационный модуль и система обучения глухих, немых и глухонемых людей разговорной речи

Изобретение относится к области образования, в частности к сурдопедагогике, и предназначено для визуального обучения людей с ограниченными возможностями по слуху и/или речи семантике слов разговорной речи и может быть использовано в качестве учебного пособия. Учебно-демонстрационный модуль 1...
Тип: Изобретение
Номер охранного документа: 0002715792
Дата охранного документа: 03.03.2020
15.03.2020
№220.018.0c8a

Авиационная силовая установка

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса (1), прикрепленного к торцевой поверхности фюзеляжа (2) центральной и обтекаемыми...
Тип: Изобретение
Номер охранного документа: 0002716643
Дата охранного документа: 13.03.2020
Showing 51-54 of 54 items.
04.04.2018
№218.016.366a

Универсальная лазерная оптическая головка

Изобретение относится к области обработки материалов лазерным лучом, а именно к лазерной оптической головке, которая может быть использована для лазерной сварки, резки и сверления отверстий. Оптическая головка содержит наружный неподвижный корпус (1). Внутри корпуса (1) расположен внутренний...
Тип: Изобретение
Номер охранного документа: 0002646515
Дата охранного документа: 05.03.2018
09.06.2018
№218.016.6023

Способ лазерной наплавки покрытий на образец и устройство для его осуществления

Изобретение относится к устройству и способу лазерной наплавки покрытия на образец. Осуществляют подачу потока газопорошковой смеси и инертного защитного газа на поверхность образца с одновременным расплавлением газопорошковой смеси лазерным лучом и перемещением образца относительно лазерного...
Тип: Изобретение
Номер охранного документа: 0002656906
Дата охранного документа: 07.06.2018
19.10.2018
№218.016.9419

Устройство для гибридного лазерно-акустического создания функционально-градиентного материала

Изобретение относится к получению функционально-градиентного материала на подложке методом прямого лазерного нанесения. Устройство содержит лазерный блок и акустический генератор. В корпусе с выходным отверстием установлена с кольцевым зазором вставка с центральным проходным каналом для...
Тип: Изобретение
Номер охранного документа: 0002669953
Дата охранного документа: 17.10.2018
26.06.2019
№219.017.91ff

Способ гибридного лазерного шаржирования поверхности образца

Изобретение относится к способу гибридного лазерного шаржирования поверхности образца. Способ включает подачу направленного потока газопорошковой смеси на поверхность обрабатываемого образца с одновременным созданием на его поверхности твердожидкой области с помощью лазерного луча и...
Тип: Изобретение
Номер охранного документа: 0002692348
Дата охранного документа: 24.06.2019
+ добавить свой РИД