×
04.04.2018
218.016.3346

ВИДЕОСИСТЕМА ДЛЯ РЕГИСТРАЦИИ НЕШТАТНЫХ СИТУАЦИЙ НА СУДОХОДНЫХ РЕКАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002645425
Дата охранного документа
21.02.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к устройствам для видеоконтроля водных акваторий с обеспечением регистрации нештатных ситуаций, связанных с движением судов по несанкционированным курсам или их нахождением в запретных зонах. Заявленная видеосистема для регистрации нештатных ситуаций на судоходных реках содержит установленные, по меньшей мере, на одной опоре поворотные видеокамеры видимого диапазона с Ethernet-интерфейсом и ПЗС-матрицей, стандартные сетевые устройства для архивации и обработки видеоданных, обнаружения, идентификации и распознавания объектов оператором, а также малогабаритные лазерные источники света для создания светящихся реперных точек, образующих опорную сетку для определения координат наблюдаемых объектов. При этом на опоре дополнительно установлена лазерно-акустическая система для получения видеоданных подводной части наблюдаемого объекта относительно оси судового хода наблюдаемого объекта. Технический результат - расширение функциональных возможностей.
Реферат Свернуть Развернуть

Изобретение относится к устройствам для видеоконтроля водных акваторий с обеспечением регистрации нештатных ситуаций, связанных с движением судов (а также катеров, лодок и т.п.) по несанкционированным (запрещенным) курсам или их нахождением в запретных зонах. Данное техническое решение может найти применение для осуществления контроля обстановки на судоходных реках и других водоемах, испытывающих существенную техногенную нагрузку в виде интенсивного судоходства, а также при входе и выходе крупнотоннажных судов в порты при стесненных обстоятельствах плавания и при подходах к погрузочно-разгрузочным морским терминалам морских добычных комплексов углеводородов.

Известен комплекс панорамного видеонаблюдения и контроля территории (патент на полезную модель RU №108136 U1, 06.09.2010 [1]), состоящий из стационарных и поворотных видеокамер, каждая из которых обеспечивает автоматизированное панорамное видеонаблюдение, обнаружение, идентификацию и распознавание оператором объектов в видимом и инфракрасном участках электромагнитного спектра, измерение расстояний, азимутов выбранных объектов наблюдения и их координат. Данный комплекс дополнительно включает в себя лазерный угломер-дальномер, блок детального видеообзора, тепловизор, электронный компас, размещенные на высокоточной гиростабилизированной опорно-поворотной платформе, GPS/ГЛОНАСС приемник, соединенные с блоком обработки.

Недостатками данного устройства являются сложная функциональная схема и наличие большого количества дорогостоящих узлов и блоков, что затрудняет его практическое использование, поскольку ценность подобных систем видеонаблюдения и контроля в большой степени заключается в возможности их быстрого и экономичного развертывания на реальных контролируемых объектах.

Известны также аналогичные технические решения (патенты RU №110519 U1, 20.11.2011 [2], RU №113604 U1, 20.02.2012 [3], RU №111939 U1, 27.12.2011 [4], заявка US №20120229282 А1, 13.09.2012 [5]), направленные на повышение надежности эксплуатации с функциями видеонаблюдения, обнаружения, идентификации и распознавания объектов оператором, и имеющие аналогичные недостатки.

Известна также видеосистема, построенная на широко распространенных и доступных в настоящее время поворотных видеокамерах видимого диапазона, имеющих Ethernet-интерфейс и ПЗС-матрицу в качестве чувствительного элемента. Видеокамеры устанавливаются, по меньшей мере, на одной опоре. Кроме того, используются стандартные сетевые устройства для архивации и обработки видеоданных, а также программное обеспечение для обнаружения, идентификации и распознавания объектов оператором (патент RU №2574517 С2, 10.02.2016 [6]).

Данная видеосистема, в отличие от аналогов [1-5], дополняется узконаправленными лазерными источниками света, используемыми для постановки (проекции) на контролируемой территории (поверхности водной акватории) светящихся реперных точек. Программное обеспечение дополняется модулем, реализующим аналитические и/или интерполяционные алгоритмы определения координат объектов на местности по расположению их отображений на матрице видеокамеры относительно соответствующих отображений реперных точек.

Известная видеосистема [6] не содержит в отличие от аналогов лазерный угломер-дальномер, блок детального видеообзора, тепловизор, электронный компас, размещенные на высокоточной гиростабилизированной опорно-поворотной платформе, GPS/ГЛОНАСС приемник, соединенные с блоком обработки, необходимые для определения дистанций и азимутов объектов стандартными способами. Это существенно упрощает конструкцию до уровня широко распространенных стандартных систем видеонаблюдения.

Дополнительно входящие в известную систему лазерные источники света для постановки («подсветки») реперных точек по существу являются малогабаритными (масса не более 1 кг) светильниками (модулируемыми некоторым однократно заданным двоичным кодом), которые требуют лишь надежного крепления и подачи электропитания (мощность одного источника: до 20 Вт).

При этом система позволяет, используя проецируемые реперные точки в качестве опорной сетки, определять координаты наблюдаемых объектов (и, следовательно, дистанции и азимуты относительно любой заданной точки) с помощью программного обеспечения, реализующего достаточно простые аналитические или интерполяционные методы.

Однако при осуществлении судовождения в стесненных обстоятельствах плавания важным обстоятельством для обеспечения безопасного судовождения является знание положения подводной части наблюдаемого объекта относительно рекомендованного судового хода, что известной видеосистемой не осуществляется.

Задачей предлагаемого технического решения является расширение функциональных возможностей видеосистемы для осуществления контроля обстановки на судоходных реках и других водоемах, испытывающих существенную техногенную нагрузку в виде интенсивного судоходства, а также при входе и выходе крупнотоннажных судов в порты при стесненных обстоятельствах плавания и при подходах к погрузочно-разгрузочным морским терминалам морских добычных комплексов углеводородов.

Поставленная задача решается за счет того, что в видеосистеме для регистрации нештатных ситуаций на судоходных реках, включающей установленные, по меньшей мере, на одной опоре поворотные видеокамеры видимого диапазона с Ethernet-интерфейсом и ПЗС-матрицей, а также стандартные сетевые устройства для архивации и обработки видеоданных, обнаружения, идентификации и распознавания объектов оператором, малогабаритные лазерные источники света для создания светящихся реперных точек, образующих опорную сетку для определения координат наблюдаемых объектов, на опоре дополнительно установлена лазерно-акустическая система для получения видеоданных подводной части наблюдаемого объекта относительно оси судового хода наблюдаемого объекта.

Как и в прототипе [6], видеосистема включает лазерные источники для постановки («подсветки») реперных точек, видеокамеру видимого диапазона с Ethernet-интерфейсом. Определение координат наблюдаемого объекта на водной поверхности осуществляется в соответствии с алгоритмами прототипа.

При этом оператор регистрирует и идентифицирует на изображении, полученном с видеокамеры, объект, находящийся на контролируемой акватории, и с помощью программного обеспечения определяет выраженные в пикселях координаты Xm и Ym связанной с объектом точки m на матрице видеокамеры. Координаты реальной точки Р на водной поверхности, которая соответствует точке m на матрице, и вычисляется по известной формуле (Бруевич П.Н. Фотограмметрия: Учебник для вузов. М.: Недра, 1990, 285 с.).

Прямоугольные координаты (хР, yP) точки на местности пересчитываются в общепринятую географическую систему координат.

Проецирование светящихся реперных точек на водной поверхности осуществляется, как и в прототипе, с помощью узконаправленных лазерных источников света, работающих в видимом (350-850 нм) или ближнем инфракрасном (850-1000 нм) спектральных диапазонах, которые совпадают со спектральной областью чувствительности большинства ПЗС матриц современных видеокамер (Кругль Г. Профессиональное видеонаблюдение. Практика и технологии аналогового и цифрового CCTV. Москва: Security Focus, 2010, 640 с.).

Идентификация каждой реперной точки может осуществляться, например, путем модуляции света лазерных источников уникальным в рамках данной системы двоичным кодом.

Для сокращения числа лазерных источников могут применяться различные светоделительные приспособления, позволяющие с помощью одного источника проецировать на водную поверхность несколько реперных точек.

В отличие от прототипа [6] на опоре дополнительно установлена лазерно-акустическая система для получения видеоданных подводной части распознанного объекта относительно оси судового хода наблюдаемого объекта. Лазерно-акустическая система содержит расположенный над поверхностью водоема источник акустических сигналов в виде лазера, гидрофон и установленный над водной поверхностью вычислительный блок, соединенный с выходом приемного гидрофона. Источником акустических сигналов является импульсный газоразрядный CO2 лазер, длина волны излучения которого обеспечивает создание поверхностного импульса давления. Приемный гидрофон может быть выполнен широкополосным. Вычислительный блок содержит последовательно соединенные с выходом приемного гидрофона модуль сегментации, модуль памяти, коммутатор, модуль сравнения и модуль принятия решения (классификации). По изменению сегментов эхосигналов в сравнении с калиброванными сигналами обнаруживать и классифицировать различные подводные объекты в контролируемом водоеме. Аналогом лазерно-акустической системы является система, приведенная в патенте RU №2568975 С1, 20.11.2015.

Система содержит установленный над поверхностью водоема на опоре импульсный газоразрядный CO2 лазер с длиной волны лазерного излучения 10,6 мкм, обеспечивающей взрывное вскипание водной поверхности и создание поверхностного сверхширокополосного импульса давления, который используется для создания источника акустических сигналов на поверхности водоема, регистрирующий излучение источника акустического сигнала, отраженное от подводного объекта, установленный в фиксированной точке водоема приемный широкополосный гидрофон, сигнал с которого поступает на вход установленного на платформе вычислительного блока, содержащего последовательно соединенные с выходом приемного широкополосного гидрофона модуль сегментации, модуль памяти, коммутатор, модуль сравнения и модуль принятия решения, при этом выход модуля сегментации соединен с вторым входом коммутатора, а второй выход модуля памяти соединен с вторым входом модуля сравнения.

Устройство работает следующим образом. Луч импульсного газоразрядного CO2 лазера направляется на поверхность водоема. Энергия излучения такого лазера поглощается в тонком поверхностном слое воды, что приводит к испарению слоя, и создает сверхширокополосный (СШП) импульс давления, являющийся источником акустических сигналов, которые достигают подводной части наблюдаемого объекта и отражаются от него. При отражении СШП импульса его форма и спектр будут существенно изменяться из-за вклада формы и ракурса наблюдаемого объекта и вклада его собственных резонансов (в свою очередь это несет информацию об упругих и поглощающих свойствах объекта). Форма же более узкополосных сигналов при отражении меняется несущественно, следовательно, информация о свойствах наблюдаемого объекта теряется.

Импульс, возникающий при облучении воды импульсом CO2 лазера, обеспечивает возможность не только обнаружения, но и классификацию подводной цели. Причем диаграмма направленности излучения близка к гауссовой и не имеет боковых лепестков. Помимо этого, такой источник звука почти не создает реверберационной помехи, приходящей от поверхности воды.

Отраженная от подводной части наблюдаемого объекта звуковая волна регистрируется приемным широкополосным гидрофоном. Сигналы с гидрофона поступают на вход модуля сегментации. Эхосигнал, зарегистрированный гидрофоном, содержит в своей форме такие же временные характеристики (длительность фазы сжатия и разрежения, соотношение их амплитуд), что и прямой сигнал (в отличие от шумовой и даже реверберационной помехи). В модуле сегментации происходит деление эхосигнала на сегменты - временные отрезки зарегистрированных эхосигналов, которые соответствуют временным характеристикам исходного сигнала с некоторыми допусками, и определение их параметров. Вычислительный блок работает в двух режимах - режиме калибровки и рабочем режиме. Выбор режима происходит с помощью коммутатора.

В режиме калибровки отображаются и запоминаются в модуле памяти вектора сегментов сигналов от известных мишеней, которые образуют кластеры (классов камней, рыбы, помех и т.п.).

В рабочем режиме, в модуле сравнения происходит определение класса объекта по попаданию параметров сегментов эхосигнала в тот или иной кластер, хранящийся в модуле памяти. В модуле принятия решения сравнивается заданный порог вероятности правильного решения с полученными значениями.

По полученным видеоданным подводной части наблюдаемого объекта, полученным посредством лазерно-акустической системы, отображается подводная часть наблюдаемого объекта относительно оси судового хода наблюдаемого объекта.

В вычислительном блоке также определяются дистанции и азимуты относительно любой заданной точки подводной части наблюдаемого объекта с помощью программного обеспечения, реализующего достаточно простые аналитические или интерполяционные методы.

Источники информации

1. Патент на полезную модель RU №108136 U1, 06.09.2010.

2. Патент на полезную модель RU №110519 U1, 20.11.2011.

3. Патент на полезную модель RU №113604 U1, 20.02.2012.

4. Патент на полезную модель RU №111939 U1, 27.12. 2011.

5. Заявка US №20120229282 А1, 13.09.2012.

6. Патент на изобретение RU №2574517 С2, 10.02.2016 (прототип).

Видеосистема для регистрации нештатных ситуаций на судоходных реках, включающая установленные, по меньшей мере, на одной опоре поворотные видеокамеры видимого диапазона с Ethernet-интерфейсом и ПЗС-матрицей, а также стандартные сетевые устройства для архивации и обработки видеоданных, обнаружения, идентификации и распознавания объектов оператором, малогабаритные лазерные источники света для создания светящихся реперных точек, образующих опорную сетку для определения координат наблюдаемых объектов, отличающаяся тем, что на опоре дополнительно установлена лазерно-акустическая система для получения видеоданных подводной части наблюдаемого объекта относительно оси судового хода наблюдаемого объекта.
Источник поступления информации: Роспатент

Showing 41-50 of 134 items.
10.01.2015
№216.013.1b64

Система для освещения подводной обстановки

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы...
Тип: Изобретение
Номер охранного документа: 0002538440
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.356b

Заякоренная профилирующая подводная обсерватория

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для...
Тип: Изобретение
Номер охранного документа: 0002545159
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3a15

Спасательный экраноплан

Изобретение относится к морским летательным аппаратам и касается экранопланов, использующихся при поисково-спасательных работах. Спасательный экраноплан является тримаранным судном и содержит три фюзеляжа-корпуса, соединенные между собой прямоугольными крыльями. Центральный фюзеляж-корпус...
Тип: Изобретение
Номер охранного документа: 0002546357
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3bc0

Подводная обсерватория

Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический...
Тип: Изобретение
Номер охранного документа: 0002546784
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d39

Способ обустройства морских глубоководных нефтегазовых месторождений

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002547161
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4049

Судно на воздушной подушке

Изобретение относится к судостроению и касается судов на воздушной подушке (СВП). СВП содержит корпус, движительную и нагнетательную установки, ограждение области воздушной подушки с носовыми и кормовыми подвижными элементами, с бортовыми скегами и средним скегом, секционирующим область...
Тип: Изобретение
Номер охранного документа: 0002547945
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46b6

Малогабаритный донный сейсмический модуль

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов. Сущность: сейсмический модуль состоит из герметичного корпуса (1), внутри которого размещены накопитель (5) на жестком диске, блок (7) гидроакустического канала связи, размыкатель...
Тип: Изобретение
Номер охранного документа: 0002549606
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4703

Способ съемки нижней поверхности ледяного покрова

Изобретение относится к области гидролокации и может быть использовано при съемке нижней поверхности ледяного покрова на морских акваториях, в том числе и на шельфе в условиях высоких широт. Способ включает размещение гидроакустической аппаратуры в водной среде для получения картины видимой...
Тип: Изобретение
Номер охранного документа: 0002549683
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48de

Способ определения ускорения силы тяжести на движущемся объекте и устройство для его осуществления

Изобретение относится к геофизике и может быть использовано для выполнения на движущемся объекте морской гравиметрической съемки. Технический результат - расширение функциональных возможностей. Для этого измеряют ускорение неподвижным относительно объекта гравиметром, определяют широту места...
Тип: Изобретение
Номер охранного документа: 0002550161
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4968

Способ определения истинной скорости судна по измерениям длины пробега судна на галсе по фиксированному созвездию космических аппаратов среднеорбитной спутниковой радионавигационной системы

Изобретение относится к области морской навигации и может быть использовано, в частности, для определения скорости судна. Предложенный способ определения истинной скорости судна по измерениям длины пробега судна на галсе по фиксированному созвездию космических аппаратов среднеорбитной...
Тип: Изобретение
Номер охранного документа: 0002550299
Дата охранного документа: 10.05.2015
Showing 41-50 of 147 items.
10.01.2015
№216.013.1b64

Система для освещения подводной обстановки

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы...
Тип: Изобретение
Номер охранного документа: 0002538440
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.356b

Заякоренная профилирующая подводная обсерватория

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для...
Тип: Изобретение
Номер охранного документа: 0002545159
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3a15

Спасательный экраноплан

Изобретение относится к морским летательным аппаратам и касается экранопланов, использующихся при поисково-спасательных работах. Спасательный экраноплан является тримаранным судном и содержит три фюзеляжа-корпуса, соединенные между собой прямоугольными крыльями. Центральный фюзеляж-корпус...
Тип: Изобретение
Номер охранного документа: 0002546357
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3bc0

Подводная обсерватория

Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический...
Тип: Изобретение
Номер охранного документа: 0002546784
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d39

Способ обустройства морских глубоководных нефтегазовых месторождений

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002547161
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4049

Судно на воздушной подушке

Изобретение относится к судостроению и касается судов на воздушной подушке (СВП). СВП содержит корпус, движительную и нагнетательную установки, ограждение области воздушной подушки с носовыми и кормовыми подвижными элементами, с бортовыми скегами и средним скегом, секционирующим область...
Тип: Изобретение
Номер охранного документа: 0002547945
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46b6

Малогабаритный донный сейсмический модуль

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов. Сущность: сейсмический модуль состоит из герметичного корпуса (1), внутри которого размещены накопитель (5) на жестком диске, блок (7) гидроакустического канала связи, размыкатель...
Тип: Изобретение
Номер охранного документа: 0002549606
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.4703

Способ съемки нижней поверхности ледяного покрова

Изобретение относится к области гидролокации и может быть использовано при съемке нижней поверхности ледяного покрова на морских акваториях, в том числе и на шельфе в условиях высоких широт. Способ включает размещение гидроакустической аппаратуры в водной среде для получения картины видимой...
Тип: Изобретение
Номер охранного документа: 0002549683
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.48de

Способ определения ускорения силы тяжести на движущемся объекте и устройство для его осуществления

Изобретение относится к геофизике и может быть использовано для выполнения на движущемся объекте морской гравиметрической съемки. Технический результат - расширение функциональных возможностей. Для этого измеряют ускорение неподвижным относительно объекта гравиметром, определяют широту места...
Тип: Изобретение
Номер охранного документа: 0002550161
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4968

Способ определения истинной скорости судна по измерениям длины пробега судна на галсе по фиксированному созвездию космических аппаратов среднеорбитной спутниковой радионавигационной системы

Изобретение относится к области морской навигации и может быть использовано, в частности, для определения скорости судна. Предложенный способ определения истинной скорости судна по измерениям длины пробега судна на галсе по фиксированному созвездию космических аппаратов среднеорбитной...
Тип: Изобретение
Номер охранного документа: 0002550299
Дата охранного документа: 10.05.2015
+ добавить свой РИД