×
04.04.2018
218.016.30d0

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов включает гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку. Гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа. При диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа. Повышается термическая стабильность микроструктуры и механических свойств ванадиевых сплавов. 2 ил., 1 табл., 2 пр.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами IV (Zr, Ti), и VI (Cr, W) групп Периодической системы элементов и содержащих элементы внедрения (С, О, N) в количестве не менее 0.04 вес.%, используемых в качестве конструкционных материалов в ядерных реакторах деления и синтеза с разными типами теплоносителей (Li, Na, Pb, Pb-Li, Pb-Bi, FLiBe, FLiNaK, He), работающих в условиях облучения, повышенных температур и коррозионных сред, в частности, в качестве оболочек тепловыделяющих элементов реакторов на быстрых нейтронах, элементов бланкета термоядерных реакторов.

Известен способ термомеханической обработки сплавов V-4Ti-4Cr и V-5Ti-5Cr, включающий гомогенизирующий отжиг при температуре 1300°С в течение 8 часов, последующий нагрев слитков до температуры 850-1000°С с выдержкой при этой температуре в течение 1.5-2 часов и выдавливанием на прессе с коэффициентом вытяжки 2-5. Далее производится отжиг в диапазоне температур 950-1100°С в течение 1 часа и осадка прутков на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур 950-1100°С. В финале обработанная по указанной выше схеме заготовка подвергается нескольким циклам «прокатка ε = 50% + рекристаллизационный отжиг при 950-1100°С» (М.М. Потапенко, А.В. Ватулин, Г.П. Ведерников, И.Н. Губкин, В.А. Дробышев, B.C. Зурабов, М.И. Солонин, В.М. Чернов, А.К. Шиков. И.П. Поздников, А.Н. Рылов. Малоактивируемые конструкционные сплавы системы V-(4-5)Ti-(4-5)Cr // Вопросы атомной науки и техники. Серия «Материаловедение и новые материалы». - 2004. - Вып. 1(62). - С. 152-162).

Недостатками представленного аналога являются наблюдаемая в объеме обработанного материала высокая неоднородность гетерофазной структуры с формированием грубодисперсных пластинчатых (толщиной доли микрона и размерами в двух других измерениях до нескольких десятков микрон) выделений оксикарбонитридных фаз. Такое превращение происходит в процессе термического воздействия на стадии, предшествующей горячему выдавливанию, или в процессе последующей термомеханической обработки. Указанные выделения являются источниками высоких локальных внутренних напряжений и являются потенциальными местами зарождения локализованной деформации, разрушения и развития явления низкотемпературного радиационного охрупчивания сплавов. Кроме того, образование грубодисперсной фазы значительно (в несколько раз) снижает объемное содержание вьщеляющихся из пересыщенных твердых растворов мелкодисперсных частиц этой фазы и, как результат, ограничивает эффективность дисперсного упрочнения и повышения термической стабильности.

Известен способ получения сверхмелкого зерна в чистом ванадии методом равноканального углового прессования (Z.Z. Jiang, S.H. Yu, Y.B. Chun, D.H. Shin, S.K. Hwang Grain refinement of pure vanadium by equal channel angular pressing // Materials Science and Engineering A 479 (2008) 285-292). Для реализации этого способа прутки чистого ванадия после электроннолучевой плавки подвергались нагреву до 1000°С в вакууме, после чего их деформировали равноканальным угловым прессованием при температуре 350°С. В результате такой обработки в материале формировалось нанокристаллическое структурное состояние с размером зерен около 200 нм. Отжиг обработанных образцов при температуре 700°С приводил к росту зерен до микронных размеров.

Недостатками представленного аналога являются низкая термическая стабильность формируемых структурных состояний и необходимость проведения деформационной обработки при высоких температурах.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ химико-термической обработки ванадиевых сплавов легированных хромом и титаном. Заготовки сплава после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 850-1000°С с выдержкой при этой температуре в течение (1.5-2) часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур (950-1100)°С. Образцы сплава отжигают в вакууме 2×10-5 Торр при Т=1400°С в течение 1 часа, затем проводят термообработки на воздухе при Т=620°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится вакуумный (2×10-5 Торр) отжиг при 650°С в течение 10 часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава, термообработка в вакууме при 1400°С в течение 1 часа, обеспечивающая однородное распределение кислорода по толщине образца. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры с 800°С до 900°С и далее до 1000°С. На каждом шаге время отжига составляет один час. (Патент RU 2463377, МПК C22F 1/18, C21D 8/10, опубл. 10.10.2012).

Недостатком прототипа является значительная неоднородность распределения упрочняющих частиц и невозможность получения наноструктурированной зеренной структуры материала.

Задачей настоящего изобретения является разработка способа обработки заготовок ванадиевых сплавов, обеспечивающего повышение термической стабильности микроструктуры и механических свойств.

Поставленная задача решается тем, что применяется многоэтапный способ обработки заготовок ванадиевых сплавов, легированных элементами IV и VI групп Периодической системы, включающий гомогенизацию, многократную термомеханическую обработку «пластическая деформация + отжиг», диффузионное легирование сплавов кислородом и отжиг в интервале температур 1000÷1500°С, после которого проводятся деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка.

Сущность изобретения поясняется рисунками и данными, приведенными в таблице 1:

Фиг. 1 - Микроструктура сплава V-Zr-Cr после деформации кручением (N=1) (а) и последующих отжигов при Т=800°С (б), Т=900°С (в), Т=950°С (г). Просвечивающая электронная микроскопия.

Фиг. 2 - Карта угловой разориентации структуры сплава системы V-Cr-Zr-W после обработки и отжига при температуре 1200°С. Растровая электронная микроскопия (EBSD).

В частности, заготовки сплава после гомогенизирующего отжига в интервале температур 1000÷1500°С в течение 1 часа подвергают трем (и более) циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. Стабилизация сформированного структурного состояния проводится отжигом в вакууме при 1000°С в течении часа. Затем проводят термообработки на воздухе при температуре не более 700°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится серия вакуумных (2×10-5 Торр) отжигов в интервале 450÷1000°С в течение нескольких часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. Далее следует отжиг в интервале температур 1000÷1500°С, длительностью один час и более, деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка в интервале температур 700÷1200°С.

В результате термомеханической обработки в сплавах ванадия формируется гетерофазное структурное состояние, характеризуемое высокой плотностью дефектов кристаллического строения и формированием мелкодисперсных частиц на основе фаз внедрения. Легирование кислородом в процессе химико-термической обработки позволяет сформировать в материале однородное распределение мелкодисперсных частиц оксидной фазы и реализовать эффективное совместное дисперсное и субструктурное упрочнение. Большая пластическая деформация, реализуемая в условиях высокопрочного состояния, обусловленного значительными эффектами дисперсного упрочнения, позволяет сформировать нанокристаллическое структурное состояние в обрабатываемом материале.

Примеры конкретного осуществления изобретения приведены ниже:

Пример 1

Заготовку сплава V-Zr-Cr (V-1.17Zr-8.75Cr-0.14W-0.01C-0.02O-0.01N вес. %) после гомогенизирующего отжига при температуре 1400°С и трех циклов термомеханической обработки, состоящих из деформации прокаткой с обжатием ε ≈ 40% при комнатной температуре и отжига при Т=550°С в течение 1 часа, отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=550°С 210 минут. После этого проводится серия вакуумных (2×10-5 Торр) отжигов: 600°С в течение 10 часов, 750°С в течение 5 часов, 900°С в течение 2 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. Из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот (е > 3) под высоким (7 ГПа) квазигидростатическим давлением при комнатной температуре и стабилизировали при температуре 800°С в течение 1 часа.

Пример 2

Заготовку сплава системы V-Cr-Zr-W после гомогенизирующего отжига при температуре 1500°С подвергают трем циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 35% при комнатной температуре и отжига при Т=550°С в течение 1 часа. Далее образцы отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=500°С 840 минут. После этого проводится серия вакуумных отжигов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава: 600°С в течение 8 часов, 900°С в течение 6 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. После этого из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот под давлением 7 ГПа при комнатной температуре и стабилизировали при температуре 1200°С в течение 1 часа.

Структура ванадиевых сплавов после кручения под давлением (фиг. 1а) на один оборот характеризуется ярко выраженной анизотропией: формируются зерна вытянутой формы с размерами в направлениях, параллельных плоскости наковален, от 50 до 800 нм, а в направлении оси кручения от 20 до 200 нм. Внутри представленных субмикронных зерен происходит формирование двухуровневого состояния: нанофрагментов (5-20 нм), разделенных малоугловыми (0.5-2°) границами с упругой кривизной кристаллической решетки, достигающей нескольких сотен град/микрон. Формирование такого состояния приводит к более чем двукратному росту значений микротвердости (таблица 1).

После стабилизирующего отжига сплава V-Zr-Cr при 800°С (фиг. 1б) на фоне исходного структурного состояния появляются кристаллиты размерами от 50 до 250 нм с почти равноосной формой. Иногда исходные анизотропные зерна фрагментированы на субзерна указанных выше размеров. При этом значения микротвердости остаются на том же уровне, что и после деформационной обработки (таблица 1).

Дополнительные исследования показали, что прочностные характеристики материала после предлагаемой обработки сохраняются и при повышении температуры отжига до 900°С (таблица 1), несмотря на существенное изменение зеренной структуры материала (фиг. 1в): основной объем материала представлен почти равноосными зернами, размеры которых составляют 0.3-1.7 мкм, на их фоне встречаются зерна более мелкой фракции с характерными размерами 0.4-0.6 мкм. Увеличение температуры отжига до 950°С приводит к уменьшению прочностных характеристик (таблица 1).

Отжиг обработанных образцов сплава системы V-Cr-Zr-W при температуре 1200°С приводит к увеличению размеров зерен до нескольких микрон (фиг. 2), тем не менее, микротвердость материала после такой обработки остается на уровне 2.2 ГПа, что заметно превышает исходные значения.

Таким образом, сформированная в процессе химико-термической обработки высокая плотность распределенных однородным образом наноразмерных (3-20 нм) частиц оксикарбонитридов на основе Zr (O-N-C) способствует стабилизации структурных состояний, формирующихся в результате дальнейшей деформационной обработки.

Деформационная обработка при комнатной температуре до величины истинной логарифмической деформации е ≥ 1 может быть реализована различными методами, в том числе кручением под давлением, прокаткой, равноканальным угловым прессованием, многократной всесторонней ковкой или их комбинацией.

Способ обработки заготовок ванадиевых сплавов, включающий гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку, отличающийся тем, что гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа, при диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа.
СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 81-90 of 183 items.
25.08.2017
№217.015.d057

Приемник вакуумного камерного реактора синтеза гликолида и лактида

Изобретение относится к устройству промышленного синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Приемник вакуумного камерного реактора синтеза гликолида и лактида представляет собой емкость с тремя контурами...
Тип: Изобретение
Номер охранного документа: 0002621342
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d152

Катализатор дегидрирования парафиновых углеводородов, способ его получения и способ дегидрирования углеводородов с использованием этого катализатора

Изобретение относится к способу получения алюмохромового катализатора для процессов дегидрирования парафиновых углеводородов до соответствующих непредельных углеводородов, к катализатору и к способу дегидрирования. Описан катализатор, содержащий в своём составе оксиды хрома, калий и/или натрий,...
Тип: Изобретение
Номер охранного документа: 0002622035
Дата охранного документа: 09.06.2017
26.08.2017
№217.015.da22

Способ регистрации планктона

Способ регистрации планктона включает в себя формирование изучаемого объема среды путем передачи в выбранном направлении импульсного оптического излучения и регистрацию теневого изображения в виде цифровой осевой голограммы Габора. Затем восстанавливают с голограммы послойно изображение объема...
Тип: Изобретение
Номер охранного документа: 0002623984
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da6e

Способ прогнозирования безрецидивной выживаемости у больных раком молочной железы

Изобретение относится к области медицины, конкретно к онкологии, и касается способов прогнозирования безрецидивной выживаемости у больных раком молочной железы. Сущность способа: определяют уровень экспрессии YKL-39 по технологии ТaqMan с помощью специфичных праймеров и пробы Sense...
Тип: Изобретение
Номер охранного документа: 0002623869
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.db03

Способ получения заготовок сплавов ванадия

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия. Способ получения заготовок сплавов ванадия включает гомогенизацию слитка, формирование заготовки путем нагрева и выдавливания...
Тип: Изобретение
Номер охранного документа: 0002623848
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.db41

Способ получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов

Изобретение относится к производству волокнистых синтетических материалов из термопластичных веществ, включая различные виды бытовых и промышленных отходов, может быть использовано для получения пористых теплоизоляционных материалов, сорбентов для сбора нефти и нефтепродуктов, фильтрующих и...
Тип: Изобретение
Номер охранного документа: 0002624189
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.df55

Способ определения интегральной антиоксидантной активности с использованием индикаторной системы медь(ii) - неокупроин

Изобретение относится к области аналитической химии и может быть использовано для определения интегральной антиоксидантной активности (АОА) растительного сырья и продуктов питания на его основе. Способ включает взаимодействие реагента, иммобилизованного в оптическую полиметакрилатную мембрану,...
Тип: Изобретение
Номер охранного документа: 0002625038
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e017

Способ получения ингибитора кислотной коррозии и способ его применения

Изобретение относится к органической химии, а именно к способу получения ингибитора кислотной коррозии – 4,5-дигидроксиимидазолидин-2-тиона путём конденсации глиоксаля и тиомочевины, заключающийся в том, что процесс проводят при 45 °C в течение двух часов, в качестве растворителя используют...
Тип: Изобретение
Номер охранного документа: 0002625312
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e3c6

Способ дезактивации руд, рудных и техногенных концентратов

Изобретение относится к химической технологии и может быть использовано при переработке руд, рудных и техногенных концентратов для их дезактивации от примесей радиоактивных изотопов: Th, U, U, U, Th, Th, Ra, Ra, Ra. Способ включает обработку раствором выщелачивателя с получением пульпы,...
Тип: Изобретение
Номер охранного документа: 0002626264
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.ec3f

Катализатор дегидрирования лёгких парафиновых углеводородов и способ получения непредельных углеводородов с его использованием

Изобретение относится к способу получения непредельных углеводородов дегидрированием соответствующих парафиновых углеводородов с использованием алюмохромовых катализаторов и может быть использовано в нефтехимической и химической промышленности. Описан катализатор дегидрирования легких...
Тип: Изобретение
Номер охранного документа: 0002627664
Дата охранного документа: 09.08.2017
Showing 81-90 of 108 items.
26.08.2017
№217.015.db03

Способ получения заготовок сплавов ванадия

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия. Способ получения заготовок сплавов ванадия включает гомогенизацию слитка, формирование заготовки путем нагрева и выдавливания...
Тип: Изобретение
Номер охранного документа: 0002623848
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.db41

Способ получения волокнистого материала, содержащего оксидные наночастицы, из расплава термопластов

Изобретение относится к производству волокнистых синтетических материалов из термопластичных веществ, включая различные виды бытовых и промышленных отходов, может быть использовано для получения пористых теплоизоляционных материалов, сорбентов для сбора нефти и нефтепродуктов, фильтрующих и...
Тип: Изобретение
Номер охранного документа: 0002624189
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.df55

Способ определения интегральной антиоксидантной активности с использованием индикаторной системы медь(ii) - неокупроин

Изобретение относится к области аналитической химии и может быть использовано для определения интегральной антиоксидантной активности (АОА) растительного сырья и продуктов питания на его основе. Способ включает взаимодействие реагента, иммобилизованного в оптическую полиметакрилатную мембрану,...
Тип: Изобретение
Номер охранного документа: 0002625038
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.e017

Способ получения ингибитора кислотной коррозии и способ его применения

Изобретение относится к органической химии, а именно к способу получения ингибитора кислотной коррозии – 4,5-дигидроксиимидазолидин-2-тиона путём конденсации глиоксаля и тиомочевины, заключающийся в том, что процесс проводят при 45 °C в течение двух часов, в качестве растворителя используют...
Тип: Изобретение
Номер охранного документа: 0002625312
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e3c6

Способ дезактивации руд, рудных и техногенных концентратов

Изобретение относится к химической технологии и может быть использовано при переработке руд, рудных и техногенных концентратов для их дезактивации от примесей радиоактивных изотопов: Th, U, U, U, Th, Th, Ra, Ra, Ra. Способ включает обработку раствором выщелачивателя с получением пульпы,...
Тип: Изобретение
Номер охранного документа: 0002626264
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.ec3f

Катализатор дегидрирования лёгких парафиновых углеводородов и способ получения непредельных углеводородов с его использованием

Изобретение относится к способу получения непредельных углеводородов дегидрированием соответствующих парафиновых углеводородов с использованием алюмохромовых катализаторов и может быть использовано в нефтехимической и химической промышленности. Описан катализатор дегидрирования легких...
Тип: Изобретение
Номер охранного документа: 0002627664
Дата охранного документа: 09.08.2017
26.08.2017
№217.015.ec8a

Катализатор с низким содержанием оксида хрома для дегидрирования изобутана и способ дегидрирования изобутана с его использованием

Изобретение относится к катализаторам дегидрирования изобутана и к способам получения изобутилена дегидрированием изобутана. Заявлен катализатор для дегидрирования изобутана, полученный пропиткой наноструктурированного оксида циркония водным раствором CrO, катализатор дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002627667
Дата охранного документа: 09.08.2017
29.12.2017
№217.015.f012

Способ получения водно-дисперсионного кремнийорганического лака

Изобретение относится к способам производства лакокрасочных материалов. Предложен способ получения водно-дисперсионного кремнийорганического лака на основе полиорганосилоксанов, при котором раствор полиорганосилоксанов в органическом растворителе (толуол, ксилол) эмульгируют в воде с...
Тип: Изобретение
Номер охранного документа: 0002629192
Дата охранного документа: 25.08.2017
29.12.2017
№217.015.f288

Способ и реагент-индикатор для рн-метрии вагинальной жидкости

Группа изобретений относится к медицине, а именно к гинекологии, и может быть использована для для рН-метрии вагинальной жидкости. Для этого проводят забор биоматериала вагинальной жидкости с формированием контактного слоя с реагентом, при этом контактный слой получают смешиванием образца...
Тип: Изобретение
Номер охранного документа: 0002637649
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f2bf

Способ получения n2-метилдезоксигуанозина

Изобретение относится к способу получения N2-метилдезоксигуанозина и может быть использовано в химической промышленности. Предложенный способ получения N2-метилдезоксигуанозина методом восстановительного аминирования формальдегида дезоксигуанозином проводят при перемешивании в течение 36 часов...
Тип: Изобретение
Номер охранного документа: 0002637503
Дата охранного документа: 05.12.2017
+ добавить свой РИД