×
04.04.2018
218.016.30d0

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов включает гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку. Гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа. При диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа. Повышается термическая стабильность микроструктуры и механических свойств ванадиевых сплавов. 2 ил., 1 табл., 2 пр.

Изобретение относится к области радиационного материаловедения и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами IV (Zr, Ti), и VI (Cr, W) групп Периодической системы элементов и содержащих элементы внедрения (С, О, N) в количестве не менее 0.04 вес.%, используемых в качестве конструкционных материалов в ядерных реакторах деления и синтеза с разными типами теплоносителей (Li, Na, Pb, Pb-Li, Pb-Bi, FLiBe, FLiNaK, He), работающих в условиях облучения, повышенных температур и коррозионных сред, в частности, в качестве оболочек тепловыделяющих элементов реакторов на быстрых нейтронах, элементов бланкета термоядерных реакторов.

Известен способ термомеханической обработки сплавов V-4Ti-4Cr и V-5Ti-5Cr, включающий гомогенизирующий отжиг при температуре 1300°С в течение 8 часов, последующий нагрев слитков до температуры 850-1000°С с выдержкой при этой температуре в течение 1.5-2 часов и выдавливанием на прессе с коэффициентом вытяжки 2-5. Далее производится отжиг в диапазоне температур 950-1100°С в течение 1 часа и осадка прутков на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур 950-1100°С. В финале обработанная по указанной выше схеме заготовка подвергается нескольким циклам «прокатка ε = 50% + рекристаллизационный отжиг при 950-1100°С» (М.М. Потапенко, А.В. Ватулин, Г.П. Ведерников, И.Н. Губкин, В.А. Дробышев, B.C. Зурабов, М.И. Солонин, В.М. Чернов, А.К. Шиков. И.П. Поздников, А.Н. Рылов. Малоактивируемые конструкционные сплавы системы V-(4-5)Ti-(4-5)Cr // Вопросы атомной науки и техники. Серия «Материаловедение и новые материалы». - 2004. - Вып. 1(62). - С. 152-162).

Недостатками представленного аналога являются наблюдаемая в объеме обработанного материала высокая неоднородность гетерофазной структуры с формированием грубодисперсных пластинчатых (толщиной доли микрона и размерами в двух других измерениях до нескольких десятков микрон) выделений оксикарбонитридных фаз. Такое превращение происходит в процессе термического воздействия на стадии, предшествующей горячему выдавливанию, или в процессе последующей термомеханической обработки. Указанные выделения являются источниками высоких локальных внутренних напряжений и являются потенциальными местами зарождения локализованной деформации, разрушения и развития явления низкотемпературного радиационного охрупчивания сплавов. Кроме того, образование грубодисперсной фазы значительно (в несколько раз) снижает объемное содержание вьщеляющихся из пересыщенных твердых растворов мелкодисперсных частиц этой фазы и, как результат, ограничивает эффективность дисперсного упрочнения и повышения термической стабильности.

Известен способ получения сверхмелкого зерна в чистом ванадии методом равноканального углового прессования (Z.Z. Jiang, S.H. Yu, Y.B. Chun, D.H. Shin, S.K. Hwang Grain refinement of pure vanadium by equal channel angular pressing // Materials Science and Engineering A 479 (2008) 285-292). Для реализации этого способа прутки чистого ванадия после электроннолучевой плавки подвергались нагреву до 1000°С в вакууме, после чего их деформировали равноканальным угловым прессованием при температуре 350°С. В результате такой обработки в материале формировалось нанокристаллическое структурное состояние с размером зерен около 200 нм. Отжиг обработанных образцов при температуре 700°С приводил к росту зерен до микронных размеров.

Недостатками представленного аналога являются низкая термическая стабильность формируемых структурных состояний и необходимость проведения деформационной обработки при высоких температурах.

Наиболее близким по технической сущности решением, выбранным в качестве прототипа, является способ химико-термической обработки ванадиевых сплавов легированных хромом и титаном. Заготовки сплава после гомогенизирующего отжига при температуре 1300°С в течение 8 часов, последующего нагрева слитков до температуры 850-1000°С с выдержкой при этой температуре в течение (1.5-2) часов и выдавливания на прессе с коэффициентом вытяжки 2-5 подвергаются отжигу в диапазоне температур 950-1100°С в течение 1 часа и осадке прутков из заготовок на гидравлическом прессе со степенью деформации не более 50% с последующим рекристаллизационным отжигом в диапазоне температур (950-1100)°С. Образцы сплава отжигают в вакууме 2×10-5 Торр при Т=1400°С в течение 1 часа, затем проводят термообработки на воздухе при Т=620°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится вакуумный (2×10-5 Торр) отжиг при 650°С в течение 10 часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава, термообработка в вакууме при 1400°С в течение 1 часа, обеспечивающая однородное распределение кислорода по толщине образца. После указанных выше операций проводятся 3 цикла термомеханической обработки, состоящие из деформации прокаткой с обжатием ε ≈ 30% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. На заключительном этапе производится ступенчатая термообработка при последовательном повышении температуры с 800°С до 900°С и далее до 1000°С. На каждом шаге время отжига составляет один час. (Патент RU 2463377, МПК C22F 1/18, C21D 8/10, опубл. 10.10.2012).

Недостатком прототипа является значительная неоднородность распределения упрочняющих частиц и невозможность получения наноструктурированной зеренной структуры материала.

Задачей настоящего изобретения является разработка способа обработки заготовок ванадиевых сплавов, обеспечивающего повышение термической стабильности микроструктуры и механических свойств.

Поставленная задача решается тем, что применяется многоэтапный способ обработки заготовок ванадиевых сплавов, легированных элементами IV и VI групп Периодической системы, включающий гомогенизацию, многократную термомеханическую обработку «пластическая деформация + отжиг», диффузионное легирование сплавов кислородом и отжиг в интервале температур 1000÷1500°С, после которого проводятся деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка.

Сущность изобретения поясняется рисунками и данными, приведенными в таблице 1:

Фиг. 1 - Микроструктура сплава V-Zr-Cr после деформации кручением (N=1) (а) и последующих отжигов при Т=800°С (б), Т=900°С (в), Т=950°С (г). Просвечивающая электронная микроскопия.

Фиг. 2 - Карта угловой разориентации структуры сплава системы V-Cr-Zr-W после обработки и отжига при температуре 1200°С. Растровая электронная микроскопия (EBSD).

В частности, заготовки сплава после гомогенизирующего отжига в интервале температур 1000÷1500°С в течение 1 часа подвергают трем (и более) циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 30-50% при комнатной температуре и отжига при Т=450÷700°С в течение 1 часа. Стабилизация сформированного структурного состояния проводится отжигом в вакууме при 1000°С в течении часа. Затем проводят термообработки на воздухе при температуре не более 700°С, приводящие к образованию поверхностных окисных пленок V2O5. После этого проводится серия вакуумных (2×10-5 Торр) отжигов в интервале 450÷1000°С в течение нескольких часов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава. Далее следует отжиг в интервале температур 1000÷1500°С, длительностью один час и более, деформационная обработка до величины истинной логарифмической деформации е ≥ 1 и стабилизирующая термообработка в интервале температур 700÷1200°С.

В результате термомеханической обработки в сплавах ванадия формируется гетерофазное структурное состояние, характеризуемое высокой плотностью дефектов кристаллического строения и формированием мелкодисперсных частиц на основе фаз внедрения. Легирование кислородом в процессе химико-термической обработки позволяет сформировать в материале однородное распределение мелкодисперсных частиц оксидной фазы и реализовать эффективное совместное дисперсное и субструктурное упрочнение. Большая пластическая деформация, реализуемая в условиях высокопрочного состояния, обусловленного значительными эффектами дисперсного упрочнения, позволяет сформировать нанокристаллическое структурное состояние в обрабатываемом материале.

Примеры конкретного осуществления изобретения приведены ниже:

Пример 1

Заготовку сплава V-Zr-Cr (V-1.17Zr-8.75Cr-0.14W-0.01C-0.02O-0.01N вес. %) после гомогенизирующего отжига при температуре 1400°С и трех циклов термомеханической обработки, состоящих из деформации прокаткой с обжатием ε ≈ 40% при комнатной температуре и отжига при Т=550°С в течение 1 часа, отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=550°С 210 минут. После этого проводится серия вакуумных (2×10-5 Торр) отжигов: 600°С в течение 10 часов, 750°С в течение 5 часов, 900°С в течение 2 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. Из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот (е > 3) под высоким (7 ГПа) квазигидростатическим давлением при комнатной температуре и стабилизировали при температуре 800°С в течение 1 часа.

Пример 2

Заготовку сплава системы V-Cr-Zr-W после гомогенизирующего отжига при температуре 1500°С подвергают трем циклам термомеханической обработки, состоящим из деформации прокаткой с обжатием ε ≈ 35% при комнатной температуре и отжига при Т=550°С в течение 1 часа. Далее образцы отжигают в вакууме при 1000°С в течение часа. Затем проводят термообработки на воздухе при Т=500°С 840 минут. После этого проводится серия вакуумных отжигов для поглощения кислорода оксидной пленки поверхностным слоем ванадиевого сплава: 600°С в течение 8 часов, 900°С в течение 6 часов, 1000°С в течение 1 часа. Далее образцы подвергаются одночасовому вакуумному отжигу при температуре 1400°С. После этого из заготовки вырезали образцы-диски толщиной 0.2 мм и диаметром 8 мм, которые деформировали кручением на один оборот под давлением 7 ГПа при комнатной температуре и стабилизировали при температуре 1200°С в течение 1 часа.

Структура ванадиевых сплавов после кручения под давлением (фиг. 1а) на один оборот характеризуется ярко выраженной анизотропией: формируются зерна вытянутой формы с размерами в направлениях, параллельных плоскости наковален, от 50 до 800 нм, а в направлении оси кручения от 20 до 200 нм. Внутри представленных субмикронных зерен происходит формирование двухуровневого состояния: нанофрагментов (5-20 нм), разделенных малоугловыми (0.5-2°) границами с упругой кривизной кристаллической решетки, достигающей нескольких сотен град/микрон. Формирование такого состояния приводит к более чем двукратному росту значений микротвердости (таблица 1).

После стабилизирующего отжига сплава V-Zr-Cr при 800°С (фиг. 1б) на фоне исходного структурного состояния появляются кристаллиты размерами от 50 до 250 нм с почти равноосной формой. Иногда исходные анизотропные зерна фрагментированы на субзерна указанных выше размеров. При этом значения микротвердости остаются на том же уровне, что и после деформационной обработки (таблица 1).

Дополнительные исследования показали, что прочностные характеристики материала после предлагаемой обработки сохраняются и при повышении температуры отжига до 900°С (таблица 1), несмотря на существенное изменение зеренной структуры материала (фиг. 1в): основной объем материала представлен почти равноосными зернами, размеры которых составляют 0.3-1.7 мкм, на их фоне встречаются зерна более мелкой фракции с характерными размерами 0.4-0.6 мкм. Увеличение температуры отжига до 950°С приводит к уменьшению прочностных характеристик (таблица 1).

Отжиг обработанных образцов сплава системы V-Cr-Zr-W при температуре 1200°С приводит к увеличению размеров зерен до нескольких микрон (фиг. 2), тем не менее, микротвердость материала после такой обработки остается на уровне 2.2 ГПа, что заметно превышает исходные значения.

Таким образом, сформированная в процессе химико-термической обработки высокая плотность распределенных однородным образом наноразмерных (3-20 нм) частиц оксикарбонитридов на основе Zr (O-N-C) способствует стабилизации структурных состояний, формирующихся в результате дальнейшей деформационной обработки.

Деформационная обработка при комнатной температуре до величины истинной логарифмической деформации е ≥ 1 может быть реализована различными методами, в том числе кручением под давлением, прокаткой, равноканальным угловым прессованием, многократной всесторонней ковкой или их комбинацией.

Способ обработки заготовок ванадиевых сплавов, включающий гомогенизацию, многократную термомеханическую обработку путем пластической деформации и последующего отжига, стабилизирующий отжиг в вакууме, диффузионное легирование кислородом путем термообработки на воздухе и вакуумных отжигов и окончательную стабилизирующую термообработку, отличающийся тем, что гомогенизацию осуществляют при температуре 1000-1500°С в течение 1 часа, термомеханическую обработку осуществляют в три цикла путем деформации с обжатием ε=30-50% и отжига при температуре 450-700°С в течение 1 часа, стабилизирующий отжиг в вакууме проводят при температуре 1000°С в течение 1 часа, при диффузионном легировании кислородом термообработку на воздухе проводят при температуре не более 700°С, а вакуумные отжиги - при температуре 450-1000°С, затем осуществляют вакуумный отжиг при температуре 1000-1500°С, деформационную обработку при комнатной температуре до величины истинной логарифмической деформации е ≥ 1, а окончательную стабилизирующую термообработку проводят при температуре 700-1200°С в течение 1 часа.
СПОСОБ ОБРАБОТКИ ЗАГОТОВОК ВАНАДИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 51-60 of 183 items.
13.01.2017
№217.015.8dfb

Комбинированный способ обработки сплавов ванадия

Изобретение относится к обработке ванадиевых сплавов, легированных элементами IVB группы, содержащих элементы замещения Cr, W и элементы внедрения С, О, N в количестве не менее 0,04 мас.%. Способ включает гомогенизирующий отжиг заготовки сплава, многократную термомеханическую обработку,...
Тип: Изобретение
Номер охранного документа: 0002605015
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9134

Способ получения культуры изолированных корней silene linicola к1601 - продуцента экдистероидов

Изобретение относится к биотехнологии и может быть использовано в фармацевтической и пищевой промышленности. Способ предусматривает бактериальную трансформацию экспланта корня ювенильного растения Silene linicola агробактериальным штаммом R-1601 A. Rhizogenes. Трансформированные корни от...
Тип: Изобретение
Номер охранного документа: 0002605912
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.94a4

Способ получения покрытия с высокой воспроизводимостью оптических свойств

Изобретение относится к технологии пленкообразующих растворов (ПОР) и касается способа получения, позволяющего формировать на их основе тонкопленочные покрытия, состоящие из диоксида титана, немодифицированного и модифицированного оксидами кремния и/или d-металла (Ni, Co, Mn, Fe) с высокой...
Тип: Изобретение
Номер охранного документа: 0002608412
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.97a3

Способ определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты

Изобретение относится к аналитической химии, а именно к способам определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК). Способ определения продуктов химического гидролиза дезоксирибонуклеиновой кислоты (ДНК) включает хроматографическое определение продуктов гидролиза....
Тип: Изобретение
Номер охранного документа: 0002609431
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.981e

Способ определения концентрации донорного фона в структурах cdxhg1-xte

Способ определения концентрации донорного фона в CdHgTe принадлежит к характеризации материалов и структур оптоэлектроники, точнее к твердым растворам CdHgTe – основному материалу для изготовления фотодиодов инфракрасного диапазона спектра. Технический результат – создание метода определения...
Тип: Изобретение
Номер охранного документа: 0002609222
Дата охранного документа: 31.01.2017
25.08.2017
№217.015.9ad9

Способ определения аскорбиновой кислоты и дофамина в воде при совместном присутствии с использованием модифицированных электродов

Изобретение относится к области электрохимического анализа и предназначено для проведения качественного и количественного определения аскорбиновой кислоты и дофамина вольтамперометрическим методом в широком спектре объектов (пищевые продукты, фармацевтические препараты, объекты окружающей...
Тип: Изобретение
Номер охранного документа: 0002610220
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b62

Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным...
Тип: Изобретение
Номер охранного документа: 0002610257
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
Showing 51-60 of 108 items.
25.08.2017
№217.015.981e

Способ определения концентрации донорного фона в структурах cdxhg1-xte

Способ определения концентрации донорного фона в CdHgTe принадлежит к характеризации материалов и структур оптоэлектроники, точнее к твердым растворам CdHgTe – основному материалу для изготовления фотодиодов инфракрасного диапазона спектра. Технический результат – создание метода определения...
Тип: Изобретение
Номер охранного документа: 0002609222
Дата охранного документа: 31.01.2017
25.08.2017
№217.015.9ad9

Способ определения аскорбиновой кислоты и дофамина в воде при совместном присутствии с использованием модифицированных электродов

Изобретение относится к области электрохимического анализа и предназначено для проведения качественного и количественного определения аскорбиновой кислоты и дофамина вольтамперометрическим методом в широком спектре объектов (пищевые продукты, фармацевтические препараты, объекты окружающей...
Тип: Изобретение
Номер охранного документа: 0002610220
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b62

Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным...
Тип: Изобретение
Номер охранного документа: 0002610257
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bbd

Способ получения 4(5)-нитроимидазола

Изобретение относится к области органической химии, а именно к способу получения 4(5)-нитроимидазола, заключающемуся в нитровании имидазола натрием азотнокислым в присутствии серной кислоты при нагревании, с последующим охлаждением, нейтрализацией реакционной смеси, выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002610267
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9bf4

Импульсный лавинный s-диод

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции...
Тип: Изобретение
Номер охранного документа: 0002609916
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.9d6a

Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Изобретение относится к области синтеза оксидных многофункциональных металлов сложного состава в нанодисперсном состоянии. Описан способ получения нанодисперсных оксидных материалов в виде сферических агрегатов, включающий приготовление раствора, в состав которого входят растворимые соли,...
Тип: Изобретение
Номер охранного документа: 0002610762
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e02

Стенд для исследования высокоскоростного соударения мелких частиц с преградой

Изобретение относится к экспериментальной технике, а именно к стендам для исследования высокоскоростных взаимодействий тел с преградами. Стенд для исследования высокоскоростного соударения мелких частиц с преградой включает ствольную метательную установку с размещёнными в её разгонном стволе...
Тип: Изобретение
Номер охранного документа: 0002610790
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e80

Способ твердофазной экстракции красителя толуидинового синего

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции основного тиазинового красителя толуидинового синего из водных растворов. Способ включает взаимодействие полимерной матрицы со сшитой внутренней структурой с аналитом, последующее ее...
Тип: Изобретение
Номер охранного документа: 0002605965
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a751

Способ получения композитного каталитического материала в виде слоистых полых сфер

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ...
Тип: Изобретение
Номер охранного документа: 0002608125
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.aa05

Алюмооксидный носитель и способ его получения

Изобретение относится к области химической технологии и каталитической химии и может найти применение в производстве катализаторов для различных отраслей химической и нефтехимической промышленности, а именно изобретение относится к способу получения алюмооксидного носителя для катализатора,...
Тип: Изобретение
Номер охранного документа: 0002611618
Дата охранного документа: 28.02.2017
+ добавить свой РИД