×
04.04.2018
218.016.300d

Результат интеллектуальной деятельности: Способ измерения электрической емкости

Вид РИД

Изобретение

Аннотация: Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости заключается в регистрации времени заряда измеряемого конденсатора с момента подачи на него через резистор постоянного напряжения до момента достижения на измеряемом конденсаторе заранее принятого порогового значения напряжения. При этом после подключения последовательно к измеряемому конденсатору образцового конденсатора с известной емкостью снова измеряют время заряда этих конденсаторов, не меняя при этом значения сопротивления резистора, напряжения зарядного источника и заранее принятого порогового значения напряжения на обкладках этих конденсаторов, и измеряемую емкость вычисляют по формуле где C - емкость образцового конденсатора; t - время заряда конденсатора с измеряемой емкостью C до заранее принятого порогового значения напряжения на его обкладках; t - время заряда цепи из последовательно соединенных конденсаторов C и C до заранее принятого порогового значения напряжения на их обкладках. Техническим результатом является повышение точности измерения электрической емкости. 3 ил., 1 табл.

Область техники, к которой относится изобретение

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.).

Уровень техники

Известно много способов измерения электрической емкости, среди которых можно отметить:

- способы, использующие резонансные свойства колебательного контура, содержащего катушку индуктивности и конденсатор с измеряемой емкостью CX (Полулях К.С. Резонансные методы измерений. - М.: Энергия, 1980. - 120 с.);

- способы измерения параметров RC-генератора, содержащего во времязадающей цепи измеряемый конденсатор CX (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - 624 с.);

- мостовые методы, основанные на сравнении измеряемой емкости с образцовой (Шарапов В.М. Емкостные датчики. В.М. Шарапов, И.Г. Минаев и др. Под ред. В.М. Шарапова. - Черкассы: Брама-Украина, 2010. - 152 с.).

Недостаток перечисленных способов заключается в необходимости использования и обработки высокочастотных сигналов, что усложняет их техническую реализацию.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятым авторами за прототип является известный способ измерения электрической емкости на постоянном токе, основанный на измерении параметров переходного процесса в пассивном линейном четырехполюснике, содержащем конденсатор с измеряемой емкостью CX и активное сопротивление R в цепи его зарядки от источника постоянного тока с напряжением E. (Датчики: Справочное пособие / Под общ. ред. В.М. Шарапова, Е.С. Полищука. М.: Техносфера, 2012. - С. 165-166).

Известно, что переходная характеристика такого четырехполюсника, т.е. его реакция на ступенчатый входной сигнал E, графически представленная изменением напряжения U(t) на конденсаторе, имеет вид экспоненты

где U(t) - мгновенное значение напряжения на конденсаторе с измеряемой емкостью CX; t - время отсчета с момента поступления ступенчатого сигнала; T - постоянная времени: Т=R⋅CX.

Известный способ измерения емкости основан на измерении мгновенного значения напряжения U(t) в соответствующий момент времени t, что позволяет, используя свойства экспоненты, определить постоянную времени T и по ней значение измеряемой емкости

Измерение емкости указанным способом сопряжено с необходимостью стабилизации значений E и R, т.к. их изменение под действием внешних факторов и старения приводит к появлению дополнительной погрешности измерения.

Раскрытие изобретения

Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения E источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью CX на результат измерения, т.е. на повышение точности измерения электрической емкости.

Технический результат достигается тем, что на измеряемый конденсатор CX через резистор R подают постоянное напряжение E и измеряют время t1 заряда этого конденсатора с момента подачи E до момента достижения на конденсаторе заранее принятого порогового значения U0; затем отключают источник постоянного напряжения E, разряжают конденсатор CX, подключают последовательно с ним образцовый конденсатор емкостью CO, снова подают через тот же резистор R постоянное напряжение E и измеряют время t2 заряда этих конденсаторов до того же порогового значения U0, после чего рассчитывают измеряемую емкость CX по формуле

Краткое описание чертежей

На фиг. 1 изображена принципиальная схема реализации предлагаемого способа измерения емкости. На фиг. 2 - переходные характеристики, показывающие изменение мгновенных значений напряжений U1(t) и U2(t). На фиг. 3 - схема установки для осуществления экспериментальной проверки работоспособности предлагаемого способа измерения электрической емкости.

Осуществление изобретения

Предлагаемый способ опирается на следующие предпосылки.

С помощью ключа K1 (фиг. 1) через резистор R в момент времени t=0 подают постоянное напряжение E на конденсатор CX. Ключ K2 при этом замкнут. Напряжение U1(t) на конденсаторе CX, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2)

с постоянной времени T1=R⋅CX.

Как только U1(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения E. С помощью ключа K3 разряжают конденсатор с измеряемой емкостью CX и, размыкая ключ K2, присоединяют последовательно с конденсатором CX образцовый конденсатор с известной емкостью CO. С помощью ключа K1 снова подают в момент времени t=0 через резистор R постоянное напряжение E на последовательно соединенные конденсаторы CX и CO.

Напряжение U2(t) на участке цепи из последовательно соединенных конденсаторов CX и CO начинает нарастать по более крутой экспоненте с постоянной времени

:

Как только U2(t) достигнет заранее принятое пороговое значение U0, фиксируют момент времени t2. Так как моменты времени t1 и t2 фиксируют при достижении мгновенными значениями напряжений U1(t) и U2(t) одного и того же уровня U0, то можно записать:

С учетом (4) и (5) это условие (6) можно записать:

Из (7) следует, что , т.е. t1T2=t2T1 или

Решая (8) относительно неизвестного значения CX, получаем формулу для его расчета (3).

При выводе этой расчетной формулы (3) в выражении (7) в левой и правой части равенства произвели сокращение на E, а в выражении (8) - сокращение на R. Такие математические действия с равенствами (7) и (8) возможны в предположении, что за короткое время, необходимое для проведения измерения t1 и t2, эти параметры, т.е. Е и R, остаются неизменными.

Поэтому значения E и R не вошли в расчетную формулу (3), что устраняет возможность появления дополнительной погрешности в случае изменения этих параметров.

Также в расчетную формулу (3) не вошло и значение U0, определяющее моменты t1 и t2.

Следовательно, предлагаемый способ устраняет влияние изменения напряжения источника питания E, сопротивления R в цепи заряда измеряемой емкости и порогового значения напряжения U0, определяющего моменты фиксации t1 и t2.

Кроме того, если при измерении t1 и t2 имела место мультипликативная составляющая систематической инструментальной погрешности, то она также не повлияет на результат измерения емкости по предлагаемому способу, т.к. войдет сомножителем в числитель и знаменатель расчетной формулы (3).

Если предлагаемый способ будет реализован на базе микроконтроллера, то интервал времени, необходимый для его осуществления, т.е. для измерения t1 и t2 и расчета CX по (3), будет составлять доли секунды, что позволяет рассчитывать на постоянство E, R и U0 в столь короткий интервал.

Необходимо отметить, что последовательность измерения t1 и t2 не влияет на результат расчета по формуле (3). Можно сначала с помощью ключа K2 соединить последовательно CO и CX, подать ключом K1 постоянное напряжение E через резистор R на эти конденсаторы и при достижении U2(t) порогового значения UO зафиксировать t2; отключить E; ключом K3 разрядить конденсаторы CO и CX; ключом K3 отсоединить CO от CX; подать E на CX; при достижении U1(t) порогового значения UO зафиксировать t1 и по формуле (3) определить значение измеряемой емкости CX.

Заранее принятое пороговое значение UO, как и в известном способе, основанном на измерении параметров переходного процесса, должно быть меньше значения E и его обычно выбирают в пределах (0,3-0,7)E.

Значение CO с целью повышения чувствительности предлагаемого способа, исходя из общеизвестных положений метрологии, следует брать соизмеримым с предполагаемым значением измеряемой емкости CX, что обеспечивает измерения как t1, так и t2 в равноточных условиях. Исходя из этого можно рекомендовать CO=(0,1…10)CX.

Измерение интервалов времени t1 и t2 возможно с применением любых известных средств как в цифровом, так и аналоговом исполнении, имеющих порог чувствительности, позволяющий проводить измерение емкости в соответствующих пределах. Чем выше чувствительность, тем меньше значение CX, доступное для измерения предлагаемым способом.

Проверка работоспособности предлагаемого способа проводилась на установке (фиг. 3), в которой измеритель напряжения 1 выполнен на базе аналогового компаратора на операционном усилителе, например, типа К554СА3. В качестве измерителя времени установлен электронный цифровой секундомер 2, например, типа СИ8 ОВЕН, с чувствительностью 10 мс, имеющий два входа: один вход 3 для запуска высоким напряжением; другой вход 4 для остановки счета в случае поступления низкого напряжения (менее 0,8 B для этого секундомера).

Такой порог чувствительности позволяет проводить измерения электрической емкости примерно от 0,5 мкФ и выше в сторону увеличения.

При измерении t1 и t2 при срабатывании ключа К1 (фиг. 3) высокое напряжение от источника E поступает на вход 3 секундомера 2, запуская его в работу. Компаратор 1 включен по схеме инвертора, т.к. опорное напряжение UO подается на неинвертирующий вход компаратора, а измеряемое напряжение U1(t) (или U2(t)) поступает на инвертирующий вход компаратора. До тех пор, пока U1(t)<UO (или U2(t)<0) на выходе компаратора высокое напряжение, что обеспечивает работу секундомера. Как только U1(t) (или U2(t)) станет равным UO, на выходе компаратора напряжение станет низким, что остановит работу секундомера и позволит снять его показания.

Как видно из представленной таблицы изменение UO с 5 B до 7,5 B (опыты №1 и №2), изменение E с 10 B до 20 B (опыты №2 и №3), изменение R с 102 кОм до 152 кОм практически не повлияли на точность измерения, и относительная погрешность измерения электрической емкости с использованием предложенного способа не превысила 2%.

Предлагаемый способ измерения емкости по сравнению с прототипом и другими известными способами обладает следующими преимуществами:

- устраняет влияние дестабилизирующих факторов, таких как изменение напряжения питания, изменение сопротивления в цепи зарядки конденсатора и изменение значения напряжения срабатывания измерителя временных интервалов, на точность измерения;

- доступность технической реализации на базе общедоступных микроконтроллеров, автоматически выполняющих все необходимые операции по измерению емкости.


Способ измерения электрической емкости
Способ измерения электрической емкости
Способ измерения электрической емкости
Способ измерения электрической емкости
Источник поступления информации: Роспатент

Showing 81-90 of 127 items.
24.01.2020
№220.017.f96a

Блок ограждения загона для содержания сельскохозяйственных животных

Изобретение относится к сельскому хозяйству, в частности к устройству загона для содержания сельскохозяйственных животных. Блок ограждения загона выполнен полым из гибкого воздухонепроницаемого материала - пневмоблок, заполнен воздухом с избыточным давлением и снабжен ниппельным клапаном с...
Тип: Изобретение
Номер охранного документа: 0002711806
Дата охранного документа: 22.01.2020
09.02.2020
№220.018.0136

Фрикционное соединение приводного вала и шкива

Изобретение относится к области машиностроения. Фрикционное соединение приводного вала со шкивом включает втулку в виде сжатой цилиндрической пружины с нулевым расстоянием между витками - пружинную втулку, размещенную между поверхностями вала и шкива, упорную шайбу, тарельчатую шайбу и гайку....
Тип: Изобретение
Номер охранного документа: 0002713754
Дата охранного документа: 07.02.2020
17.02.2020
№220.018.0308

Ручной пробоотборник почвы

Изобретение относится к устройствам для отбора проб почв с целью проведения лабораторных исследований для определения абразивной составляющей. Ручной пробоотборник почвы включает полый цилиндр с радиусом полости R и заостренной нижней кромкой с двумя рукоятями, закрепленными к нему...
Тип: Изобретение
Номер охранного документа: 0002714348
Дата охранного документа: 14.02.2020
20.02.2020
№220.018.040f

Способ восстановления цилиндрической пружины и устройство для его осуществления

Изобретение относится к ремонтному производству и может быть использовано при восстановлении упругости и первоначальной геометрии винтовых цилиндрических пружин, работающих на сжатие. Способ восстановления цилиндрической пружины включает оценку ее состояния, растяжение пружины до появления...
Тип: Изобретение
Номер охранного документа: 0002714571
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.0516

Способ определения параметров многоэлементных двухполюсников

Изобретение относится к контрольно-измерительной технике, в частности к способам определения параметров двухполюсников. Сущность способа заключается в проведении трех этапов измерений. На перовом и втором этапах измерений на исследуемые двухполюсники подают скачок постоянного напряжения Е,...
Тип: Изобретение
Номер охранного документа: 0002714954
Дата охранного документа: 21.02.2020
23.02.2020
№220.018.0575

Устройство для поражения масс саранчи в полёте

Устройство для поражения масс саранчи в полете включает летательное транспортное средство - вертолет, оснащенный емкостью для рабочей жидкости, трубопроводами, водозапорными устройствами и распылителем. Дополнительно устройство оснащено емкостью с подогревом воды для промывки системы,...
Тип: Изобретение
Номер охранного документа: 0002714767
Дата охранного документа: 19.02.2020
07.03.2020
№220.018.0a04

Универсальный резервуар для обработки и приготовления жидких пищевых продуктов

Изобретение относится к области обработки и приготовления сельскохозяйственных продуктов, в том числе молока, и может быть использовано в сельскохозяйственном производстве, пищевой промышленности, а также при обработке и хранении жидких продуктов. Универсальный резервуар состоит из корпуса с...
Тип: Изобретение
Номер охранного документа: 0002716119
Дата охранного документа: 05.03.2020
07.03.2020
№220.018.0a58

Устройство магнитной обработки клубней картофеля емкостного типа

Устройство магнитной обработки клубней картофеля емкостного типа содержит основание с колесами, механизм отклонения и фиксации рабочей емкости в вертикальной плоскости для погрузки и выгрузки клубней картофеля. Рабочая емкость выполнена из немагнитного материала, установлена на валу и...
Тип: Изобретение
Номер охранного документа: 0002716110
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c31

Способ контроля качества знаний, уверенности в них и устройство для его осуществления

Изобретение относится к области технологий компьютерного тестирования, в частности к устройству контроля качества знаний и уверенности в них, и может быть использовано при обработке цифровых данных с помощью вычислительных машин, в которых вычисления осуществляются компьютерами, основанными на...
Тип: Изобретение
Номер охранного документа: 0002716580
Дата охранного документа: 12.03.2020
19.03.2020
№220.018.0d67

Разрушитель структуры прочной почвы

Изобретение относится к устройствам для обработки почвы. Разрушитель структуры прочной почвы содержит жесткую стойку с заостренной фронтальной кромкой в части, взаимодействующей с почвой, и соединенный с ней рабочий элемент, с возможностью изменения его положения по высоте. Рабочий элемент в...
Тип: Изобретение
Номер охранного документа: 0002716997
Дата охранного документа: 17.03.2020
Showing 11-13 of 13 items.
17.08.2018
№218.016.7c6e

Беспроводная система биодиагностики ксилемного потока растений

Изобретение относится к области растениеводства, а также систем и аппаратуры передачи данных и предназначена для неразрушающей биодиагностики ксилемного потока травянистых растений с использованием беспроводной передачи данных. Система содержит датчик измерения ксилемного потока, закрепленный...
Тип: Изобретение
Номер охранного документа: 0002663997
Дата охранного документа: 14.08.2018
11.07.2019
№219.017.b2c4

Способ многоуровневого комплексного контроля технического состояния радиоэлектронных систем

Предложенное изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния радиоэлектронных систем (РЭС). Сущность предлагаемого способа многоуровневого комплексного контроля технического состояния РЭС состоит в...
Тип: Изобретение
Номер охранного документа: 0002694158
Дата охранного документа: 09.07.2019
20.04.2023
№223.018.4b36

Способ и устройство синхронизации системы управления преобразователями напряжения

Изобретение относится к системам управления силовыми преобразовательными устройствами и может быть использовано как устройство синхронизации в трехфазных управляемых мостовых выпрямителях, а также для синхронизации в цифровых и аналоговых системах управления вентильными преобразователями....
Тип: Изобретение
Номер охранного документа: 0002772321
Дата охранного документа: 18.05.2022
+ добавить свой РИД