×
17.02.2018
218.016.2bd8

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

№ охранного документа
0002643358
Дата охранного документа
01.02.2018
Аннотация: Изобретение относится к способу обработки сжиженных углеводородов. Способ обработки сжиженных углеводородов, содержащих кислые газы, для отделения вышеупомянутых кислых газов при одновременном сокращении до минимума потери аминосоединений включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, где первое аминосоединение имеет структуру в которой либо: a) R является водородом и R выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или b) R выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси; или c) каждый из R и R индивидуально выбран из группы, состоящей из метила, этила, н-пропила, изопропила, н-бутила, втор-бутила, 2-гидроксиэтила или пропан-2,3-диола, а также их смеси. Технический результат – сокращение потери аминов при обработке. 8 з.п. ф-лы, 1 ил.

Область техники, к которой относится изобретение

Настоящее изобретение относится, в общем, к способам обработки сжиженных углеводородов. Более конкретно, настоящее изобретение относится к способам удаления кислых газов из потоков сжиженных газообразных углеводородов с использованием 2-амино-2-(гидроксиметил)пропан-1,3-диоловых соединений.

Уровень техники, к которой относится изобретение

Сжиженные углеводороды, такие как сжиженный природный газ (NGL) или сжиженный нефтяной газ (LPG), представляют собой воспламеняющиеся смеси газообразных углеводородов, используемые в качестве топлива в нагревательных устройствах и двигателях. Они также все больше используются в качестве газов для распыления аэрозолей и хладагентов, заменяя хлорфторуглероды в целях уменьшения разрушения озонового слоя.

Сжиженные углеводороды изготавливают, перерабатывая нефть или "влажный" природный газ, и почти полностью производят из источников ископаемого топлива, причем они получаются в процессе переработки нефти (сырой нефти) или извлекаются из потоков нефти или природного газа, добываемых из подземных месторождений.

Сжиженные газообразные углеводороды могут быстро испаряться при нормальных температурах и давлениях, и их обычно поставляют в стальных газовых баллонах под давлением. Эти баллоны, как правило, наполнены до уровня от 80% до 85% своей емкости, чтобы обеспечивать тепловое расширение содержащейся в них жидкости. Соотношение между объемами испарившегося газа и сжиженного газа изменяется в зависимости от состава, давления и температуры, но составляет, как правило, приблизительно 250:1.

Сжиженные газообразные углеводороды часто содержат разнообразные кислые газообразные примеси, такие как сероводород, различные меркаптаны и другие разнообразные соединения серы, диоксид углерода и сероксид углерода (COS). В газоперерабатывающей промышленности хорошо известно, что такие примеси можно успешно удалять посредством контакта потоков газообразных или жидких углеводородов с водными растворами, содержащими один или несколько аминов. Водные растворы аминов могут быть селективными или неселективными в своей способности абсорбировать определенные кислые газы.

После такой абсорбции кислые соединения отделяются от аминов, и амины возвращаются в систему, за исключением аминосоединений, которые могут быть потеряны в данном процессе. Согласно теории, многие различные амины могли бы найти применение в некоторой степени для удаления кислых газов. Что касается практики, амины, которые действительно находят промышленное применение, представляют собой моноэтаноламин (МЕА), диэтаноламин (DEA), метилдиэтаноламин (MDEA) и диизопропаноламин (DIPA). Например, описано использование смесей MDEA/DIPA (патент США №4808765) для цели удаления H2S.

Обработка сжиженных газообразных углеводородов представляет собой определенные проблемы в том, что амины, как правило, растворяются в значительной степени в этих газах, приводя к соответствующим экономическим убыткам вследствие необходимости пополнения потерь амина (аминов). Многие газоперерабатывающие заводы используют водные растворы DIPA или MDEA для удаления кислых примесей из сжиженных газообразных углеводородов. Однако концентрация этих аминов, как правило, ограничивается приблизительным интервалом от 20 до 35 масс. % в водном потоке, в котором они поступают в технологический процесс. Работа при повышенных концентрациях, которые являются желательными по соображениям производительности, как правило, приводит к нежелательно высокому уровню загрязнения сжиженных газообразных углеводородов амином (аминами).

Эта проблема оказывается особенно острой на газоперерабатывающих заводах, которые перерабатывают LPG, полученный в результате крекинга (т.е. имеющий высокую степень ненасыщенности). Часто степень потери MDEA является достаточной, чтобы сделать экономически невыгодной замену метилдиэтаноламина диэтаноламином.

Каждый из патентов США №№5326385, 5877386 и 6344949 описывают так называемое "обессеривание" сжиженных газообразных углеводородов в ходе разнообразных процессов. Кроме того, согласно патенту США №4959086, используются изомеры аминосоединений для удаления сероводорода из природного газа. Описано использование смесей MDEA/DIPA (патент США №4808765) для цели удаления H2S.

Эти публикации представляют обоснованные решения проблем, которые возникают, когда "обессеривание" сжиженных газообразных углеводородов осуществляется путем обработки аминами кислых газов. Однако было бы предпочтительно наличие аминной композиции, которая позволяет в максимальной степени повысить эффективную концентрацию амина, циркулирующего в системе сжиженных газообразных углеводородов и при этом сокращает до минимума потери амина (аминов) вследствие растворимости в сжиженных газообразных углеводородах.

Сущность изобретения

В соответствии с одним аспектом настоящего изобретения, предлагается способ обработки сжиженных углеводородов, содержащих кислые газы, для удаления кислых газов при одновременном сокращении до минимума потери аминосоединений. Данный способ включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем первое аминосоединение имеет структуру:

,

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

Когда водные растворы, содержащие традиционные алканоламины, такие как метилдиэтаноламин (MDEA), используются для обработки сжиженного нефтяного газа в процессе контакта двух жидких фаз, с течением времени могут происходить значительные потери аминов. Было доказано, что присутствие гидроксильных групп имеет решающее значение для уменьшения этих потерь посредством усиления липофобной природы молекулы. Таким образом, триэтаноламин (TEA), в молекуле которого содержатся три гидроксильные группы, остается пригодным для выбора, даже несмотря на то что водный раствор MDEA оказывается превосходящим водные растворы TEA в отношении эксплуатационных характеристик и способности удаления кислых газов. Различие качества и способности между MDEA и TEA определяется, главным образом, различной силой оснований, отражающей различные значения pKa, составляющие, соответственно, 8,7 для MDEA и 7,9 для TEA.

Таким образом, алканоламины, в структурах которых содержится большее число гидроксильных групп и/или связей между атомами азота и водорода по сравнению с MDEA, и которые одновременно сохраняют низкую молекулярную массу и имеют силу основания (т.е. pKa) на уровне TEA или выше, представляли бы собой идеальных кандидатов для обработки сжиженного нефтяного газа в процессах контакта двух жидких фаз.

Введение 2-(гидроксиметил)пропан-1,3-диолового фрагмента в структуры алканоламинов позволяет уменьшать растворимость в углеводородных потоках по сравнению с имеющими эквивалентные структуры алканоламинами, в которых содержится 2-гидроксиэтильный фрагмент (т.е. традиционными этоксилированными алканоламинами). Сила основания амина, содержащего дополнительные гидроксильные группы, не изменяется по сравнению с традиционными этоксилированными алканоламинами, поскольку индуктивные эффекты, возникающие за счет присутствия более чем одной гидроксильной группы при том же заместителе у атома азота, не являются кумулятивными.

В целях настоящего изобретения сжиженные углеводороды представляют собой низкомолекулярные углеводороды, которые могут быть насыщенными или ненасыщенными, разветвленными или неразветвленными и содержащими в своем составе приблизительно от C1 до С20, предпочтительно приблизительно от C1 до С12 и предпочтительнее приблизительно от С2 до С6 атомов углерода, такие как, например, LPQ или NGL, а также их смеси.

Краткое описание чертежей

Фиг. 1 представляет графическую иллюстрацию исследуемых аминов, сравниваемых с MDEA, по относительной растворимости, которая приведена на графике зависимости от соответствующих значений pKa.

Подробное описание предпочтительных вариантов осуществления

В целом, настоящее изобретение представляет собой способ обработки сжиженных углеводородов, включающий удаление кислых газов при одновременном сокращении до минимума потери аминосоединений. Данный способ включает стадию контакта сжиженных углеводородов с абсорбирующим водным раствором первого аминосоединения, причем первое аминосоединение имеет структуру:

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

До настоящего времени, согласно предшествующему уровню техники, обычно использовались амины, имеющие относительно высокую растворимость в жидких углеводородах. Настоящее изобретение решает эту проблему, предлагая аминосоединение, имеющее меньшую растворимость в газах. Эта высокая растворимость в газах для композиций MDEA и DIPA предшествующего уровня техники представлена на Фиг. 1.

Большинство газоперерабатывающих заводов работают при суммарной концентрации аминов, составляющей не более чем приблизительно 35 масс. % амина, содержащегося в водной композиции для обработки газов. Желательной является работа на уровне, составляющем приблизительно 40 масс. % и предпочтительно даже приблизительно 50 масс. % или более суммарного содержания амина (аминов), поскольку высококонцентрированные растворы обеспечивают дополнительную способность удаления кислых газов при низкой стоимости. Кроме того, считается вероятным, что в будущем будет увеличиваться концентрация серы в сырой нефти и, следовательно, в газе.

Соответственно, чтобы поддерживать или увеличивать производство, газоперерабатывающий завод должен в среднем обрабатывать/удалять больше серы. Тем не менее вследствие возрастающей потери аминов при повышенных концентрациях в большинстве случаев оказывается экономически невыгодной работа на уровне, превышающем приблизительно 35%. Преимущество настоящего изобретения заключается в том, что оно позволяет газоперерабатывающему заводу экономично работать при повышенных концентрациях аминов без значительных затрат на восполнение потерь аминов, которые бы происходили в других условиях.

Аминосоединение, используемое в способе согласно настоящему изобретению, как правило, имеет структуру:

в которой каждый из радикалов R1 и R2 может индивидуально представлять собой атом водорода, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, 2-гидроксиэтил или пропан-2,3-диол.

Способы, известные специалистам в данной области техники, можно использовать при синтезе соединений, пригодных для способа согласно настоящему изобретению, такие как способы, описанные в опубликованной международной патентной заявке РСТ WO 2010/126657, которая включается в настоящий документ посредством ссылки.

Соединения, предусмотренные для использования согласно настоящему изобретению, предпочтительно включают перечисленные ниже соединения, такие как 2-диметиламино-2-(гидроксиметил)пропан-1,3-диол (DMTA, 2), 2-амино-2-(гидроксиметил)пропан-1,3-диол (ТА, 3), 2-метиламино-2-(гидроксиметил)пропан-1,3-диол (МТА, 4), а также их смеси.

Помимо первого аминосоединения, используемого в способе согласно настоящему изобретению, водный раствор, используемый для обессеривания LPG, может содержать и второе аминосоединение. Аминосоединения, пригодные для использования в качестве второго аминосоединения, включают аминопропандиоловые соединения, такие как 3-(2-(гидроксиэтил)метиламино)пропан-1,2-диол, 3-(метиламино)бис(пропан-1,2-диол), амино-трис(пропан-1,2-диол), 3-(метиламино)пропан-1,2-диол, 3-(амино)пропан-1,2-диол, 3-(амино)бис(пропан-1,2-диол), или их смеси; пиперазиновые соединения, такие как 3-(пиперазин-1-ил)пропан-1,2-диол, 3,3'-(пиперазин-1,4-диил)бис(пропан-1,2-диол), или их смеси, алкиламины, такие как моноэтаноламин, диэтаноламин, триэтаноламин, метилдиэтаноламин, диизопропаноламин, или их смеси; и смеси соединений, относящихся к каждому из данных классов перечисленных выше соединений.

Способ обработки

Способ согласно настоящему изобретению можно легко осуществлять посредством контакта потоков сжиженного газа со смесью 2-амино-2-(гидроксиметил)пропан-1,3-диоловых соединений, используя обычное оборудование для введения в контакт двух жидких фаз в технологических условиях, находящихся в обычных пределах такого оборудования. Хотя предпочтительно следует осуществлять некоторую оптимизацию условий на основании предшествующего уровня техники, необходимо ожидать, что уменьшение потерь, связанных с растворимостью аминов, будет происходить даже в существующих технологических условиях. Следующее преимущество согласно настоящему изобретению, таким образом, заключается в том, что для него не требуются существенные замены или модификации оборудования, уплотнения, технологических условий и т.п. Соответственно, настоящее изобретение является особенно выгодным для газоперерабатывающих заводов, которым требуется повышение производительности удаления кислых газов, но которые не могут себе позволить оплату значительного обновления основных средств.

Следующее преимущество настоящего изобретения заключается в том, что технологические параметры не ограничиваются узкими интервалами. В качестве общего правила, можно отметить, что чем выше концентрация аминов в системе, тем выше степень их потери. Примерные концентрации приведены ниже. Хотя не существует конкретного верхнего предела концентрации, предполагается, что концентрация аминов в смеси не должна составлять более чем приблизительно 95 масс. %, причем остальную массу составляет вода, чтобы преодолевать технологические проблемы, такие как недостаточное удаление H2S. Рациональный подход к определению максимально пригодной для использования концентрации в данной системе представляет собой постепенное повышение концентрации до тех пор, пока не обнаруживаются проблемы, и после этого осуществляется снижение концентрации до тех пор, пока данные проблемы не исчезают.

Аналогичным образом, не существует обязательной минимальной концентрации, и для определения этой концентрации могут потребоваться обычные эксперименты. Однако предполагается, в качестве исходной точки, что концентрация должна составлять, по меньшей мере, приблизительно 5 масс. %. Считается, что в большинстве случаев интервал используемых концентраций аминов в смеси составляет от приблизительно 10 до приблизительно 90 масс. %, предпочтительно от приблизительно 25 до приблизительно 75 масс. % и предпочтительнее от приблизительно 35 до приблизительно 65 масс. %, а остальную массу составляет вода.

Кроме того, в водной абсорбирующей композиции могут также содержаться кислоты, такие как борная кислота, серная кислота, хлористоводородная кислота, фосфорная кислота, а также их смеси. Эффективная концентрация кислоты может изменяться, составляя от 0,1 до 25 масс. % и наиболее предпочтительно от 0,1 до 12 масс. %. Источник кислоты обеспечивает эффективное восстановление аминосоединения после того, как кислый газ удаляется из система.

Рабочая температура для контакта сжиженных газообразных углеводородов с содержащей амины смесью не ограничивается в узком интервале, но обычно составляет от приблизительно 50°F (10°С) до приблизительно 190°F (88°С), предпочтительно от приблизительно 70°F (21°С) до приблизительно 160°F (71°С) и предпочтительнее от приблизительно 80°F (27°С) до приблизительно 140°F (60°С). Как правило, пониженные температуры являются предпочтительными в целях сокращения до минимума потерь, обусловленных растворимостью. Поскольку большинство газоперерабатывающих заводов не отличаются значительной гибкостью в данном отношении, преимущество согласно настоящему изобретению заключается в том, что обеспечивается существенное уменьшение потери аминов при любой заданной рабочей температуре.

Рабочие примеры

Следующие примеры представляют неограничительную иллюстрацию отличительных особенностей настоящего изобретения.

Раствор, содержащий гептан (10 г), толуол (0,1 г) и исследуемый амин (2,5 г), перемешивают при 20°С в течение одного часа. Смесь декантируют в течение 15 минут, и чистую гептановую фазу анализируют методом газовой хроматографии, используя толуол в качестве внутреннего стандарта. Впрыскивание повторяют три раза, и площади пиков исследуемого амина усредняют. Результаты представлены ниже:

Значение pKa исследуемых аминов определяли с помощью автоматической системы титрования Mettler Toledo с использованием водных растворов, содержащих 50 масс. % аминов и 0,5 н хлористоводородной кислоты. Результаты представлены ниже:

Несмотря на то что настоящее изобретение описано в отношении предпочтительных вариантов осуществления, которые представлены в описании и на чертежах, имеют место и другие варианты осуществления настоящего изобретения без отклонения от его сущности. Таким образом, объем настоящего изобретения должен ограничиваться только прилагаемой формулой изобретения.


СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ
СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ
СПОСОБ ОБРАБОТКИ СЖИЖЕННЫХ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ 2-АМИНО-2-(ГИДРОКСИМЕТИЛ)ПРОПАН-1,3-ДИОЛОВЫХ СОЕДИНЕНИЙ
Источник поступления информации: Роспатент

Showing 61-70 of 160 items.
20.08.2015
№216.013.70bc

Пригодные для печати однослойные поливинилиденхлоридные структуры

Изобретение относится к поверхности, пригодной для печати, образованной из полимерной композиции, состоящей из, по меньшей мере, одного винилиденхлорид/алкилакрилатного полимера, содержащего от приблизительно 3,4 до приблизительно 6,7 мольного процента мономерных звеньев, произведенных, по...
Тип: Изобретение
Номер охранного документа: 0002560430
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7136

Пенополимер на основе изоцианата с улучшенными термоизоляционными свойствами

Настоящее изобретение относится к содержащему фторированную углеродную сажу жесткому пенополимеру на основе изоцианата с улучшенными термическими свойствами - конкретно, к жестким пенополиуретанам и/или пенополиизоциануратам для использования в качестве изоляции. Описан жесткий пенополимер на...
Тип: Изобретение
Номер охранного документа: 0002560552
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73fc

Нанопористая полимерная пена, имеющая высокую пористость

Изобретение относится к изделиям из нанопористого полимерного пеноматериала и способу получения изделий из полимерного пеноматериала. Изделие из полимерного пеноматериала включает матрицу из термопластичного полимера, заключающую множество пор в ней. Матрица из термопластичного полимера...
Тип: Изобретение
Номер охранного документа: 0002561267
Дата охранного документа: 27.08.2015
10.12.2015
№216.013.96b3

Способ получения армированных длинными волокнами полиуретанов, которые содержат гранулированные наполнители

Изобретение относится к способу получения армированных длинными волокнами полиуретанов, которые также содержат гранулированный наполнитель. Описан способ получения армированного волокнами полиуретанового или полиуретанмочевинного композита, включающий помещение волокон длинной 2,54-10,2 см,...
Тип: Изобретение
Номер охранного документа: 0002570199
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b72

Полиуретаны, изготовленные с применением цинковых катализаторов

Настоящее изобретение касается способов изготовления полимеров из полиизоцианатов и изоцианат-реакционноспособных веществ. Изобретение, в частности, применимо для изготовления литых полиуретановых эластомеров. Описан способ получения полимера на основе полиизоцианата, включающий формирование...
Тип: Изобретение
Номер охранного документа: 0002571419
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a009

Полиуретансодержащий герметик для изоляционного стеклопакета

Варианты изобретения относятся к изоляционным элементам, в частности к изоляционным элементам, имеющим полиуретансодержащие уплотнения. Описан способ получения изоляционного элемента, включающий: образование, по меньшей мере, одной изоцианатнореакционной стороны, причем, по меньшей мере, одна...
Тип: Изобретение
Номер охранного документа: 0002572611
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.ca20

Обработка сточной воды от коксования

Изобретение относится к способу обработки сточной воды, которая образуется в коксовой промышленности. Способ обработки сточной воды от коксования включает пропускание сточной воды от коксования через последовательные стадии в таком порядке: коагуляция, удаление частиц и сильноосновная...
Тип: Изобретение
Номер охранного документа: 0002577379
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.cf3a

Полиуретановые и полиизоциануратные пенопласты

Варианты осуществления изобретения относятся к составам пеноуретановых или полиизоциануратных пенопластов. Описан состав для получения полиуретанового или полиизоциануратного пенопласта, включающий (а) комбинированный полиол, включающий (i) от приблизительно 30 до приблизительно 60 мас.%...
Тип: Изобретение
Номер охранного документа: 0002575124
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.e96f

Полиуретаны, изготовленные с использованием медьсодержащих катализаторов

Настоящее изобретение относится к способам изготовления полимеров из полиизоцианатов и изоцианат-реакционноспособных веществ. Изобретение в особенности применимо к изготовлению литьевых полиуретановых эластомеров. Описан способ получения полимера на основе полиизоцианата, включающий получение...
Тип: Изобретение
Номер охранного документа: 0002575128
Дата охранного документа: 10.02.2016
27.05.2016
№216.015.424f

Полиуретановый клей, имеющий низкую полную теплоту сгорания, и изоляционные панели, собранные с такими клеями

Настоящее изобретение относится к полиуретановым клеям, которые имеют низкую полную теплоту сгорания, и к ламинатам, как, например, изоляционные панели, которые собраны с такими клеями. Описана композиция полиуретанового клея, состоящая из двух частей, содержащая: А) компонент полиизоцианат,...
Тип: Изобретение
Номер охранного документа: 0002585286
Дата охранного документа: 27.05.2016
Showing 61-70 of 129 items.
27.02.2015
№216.013.2de4

Неорганические нанопористые частицы с вододиспергируемым полиуретановым связующим

Изобретение относится к изделию, способу получения изделия и применению изделия. Изделие может использоваться в качестве теплоизоляционного материала, а также для звукоизоляции. Изделие содержит неорганические нанопористые частицы, связанные друг с другом вододиспергируемым полиуретаном, где...
Тип: Изобретение
Номер охранного документа: 0002543216
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e21

Составы с диброммалонамидом и использование их в качестве биоцидов

Изобретение относится к биоцидам. Биоцидный состав для борьбы с микроорганизмами в водной или водосодержащей системе включает в себя: 2,2-диброммалонамид и биоцидное соединение на альдегидной основе, выбранное из группы, состоящей из глутаральдегида, трис(гидроксиметил)нитрометана,...
Тип: Изобретение
Номер охранного документа: 0002543277
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e81

Галогенированные амидные биоцидные соединения и способы обработки водных систем при от почти нейтральных до высоких величинах ph

Изобретение относится к способу борьбы с микроорганизмами в водной системе. Способ включает обработку водной системы эффективным количеством соединения формулы I, где водная система имеет величину pH 6,9 или выше. В формуле I X представляет собой галоген; R и R представляют собой,...
Тип: Изобретение
Номер охранного документа: 0002543373
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3d49

Биоцидные композиции и способы их применения

Синергетическая композиция для борьбы с ростом микроорганизмов в водной или водосодержащей системе включает: 2,2-дибром-3-нитрилопропионамид и биоцидное соединение, выбранное из группы, состоящей из 1-(3-хлораллил)-3,5,7-триаза-1-азониаадамантана, трис(гидроксиметил)-нитрометана и...
Тип: Изобретение
Номер охранного документа: 0002547177
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e85

Полиизоциануратная композиция

Изобретение относится к пенополиизоциануратной композиции, которая может найти применение при изготовлении теплоизолирующих материалов и строительных панелей. Пенополиизоциануратная композиция включает полиизоцианатное соединение, первый полиэфирполиол на основе сложного эфира, включающего...
Тип: Изобретение
Номер охранного документа: 0002547493
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.408d

Формованное полимерное изделие, характеризующееся низкой мутностью и высокой прозрачностью

Изобретение описывает формованное изделие, образованное из полимерной композиции, и способы ее изготовления. Описан способ получения формованного изделия. Способ включает выбор полимера на пропиленовой основе и эластомера на олефиновой основе. Полимер характеризуется показателем преломления...
Тип: Изобретение
Номер охранного документа: 0002548013
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4091

Композиция эксктрузионного покрытия

Изобретение относится к мультимодальной полиэтиленовой смоле, экструзионной композиции, ее содержащей, и изделиям, которые могут быть использованы для изготовления экструзионных покрытий, экструзионных профилей и пленок. Экструзионная композиция содержит мультимодальную полиэтиленовую смолу и...
Тип: Изобретение
Номер охранного документа: 0002548017
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.442e

Композиция дибромомалонамида и её применение в качестве биоцида

Изобретение относится к биоцидам. Биоцидная композиция содержит 2,2-дибромомалонамид и 2,2-дибром-3-нитрилопропионамид при массовом отношении от 31:1 до 1:1 соответственно. Осуществляют контроль микроорганизмов в водных и содержащих воду системах их обработкой указанной композицией. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002548952
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.47ae

Тканый материал с покрытием, мешок, изготовленный из него, упаковочная машина для мешков и способ заполнения мешков

Изобретение относится к многослойным упаковочным материалам и касается тканого материала с покрытием и мешка, изготовленного из этого материала. Содержит ткань из полимерных лент. Ткань покрыта герметизирующим слоем. Часть полимерных лент имеет предел прочности на разрыв меньше чем 45 сН/текс...
Тип: Изобретение
Номер охранного документа: 0002549854
Дата охранного документа: 27.04.2015
10.08.2015
№216.013.6d10

Подающее устройство для пенных и не пенных покрытий

Изобретение относится к подающему устройству для нанесения пенных покрытий или не пенных напыляемых покрытий и способу использования подающего устройства и может быть использовано для изготовления ветрозащитных пленок в строительстве для изоляции сооружений от воздействий внешней среды....
Тип: Изобретение
Номер охранного документа: 0002559478
Дата охранного документа: 10.08.2015
+ добавить свой РИД