×
13.02.2018
218.016.2501

Результат интеллектуальной деятельности: Самотормозящийся сдвоенный аксиальный асинхронный электродвигатель

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике, к самотормозящимся сдвоенным аксиальным асинхронным электродвигателям с двухдисковым статором и двухдисковым ротором. Технический результат – повышение времени непрерывной работы, эксплуатационной надежности и долговечности работы электрической машины. Сдвоенный аксиальный асинхронный электродвигатель содержит статор и ротор. Статор состоит из тормозного устройства, сборного симметричного корпуса в форме наружного цилиндрического обода с неподвижно закрепленными на нем боковыми щитами с подшипниками, который составляет единое целое с центральным опорным диском, на аксиальных поверхностях которого неподвижно закреплены магнитопроводы статора с обмотками. Ротор состоит из двух пакетов роторов в форме кольцевых дисков с вентиляционными лопатками на наружных поверхностях, содержащих магнитопроводы роторов с обмотками, с установленной между ними на валу тормозной пружиной с возможностью их аксиального перемещения вдоль оси. Внутри центрального опорного диска выполнена сеть радиальных вентиляционных каналов, проходящих под опорными поверхностями магнитопроводов статоров, соединяющих внешнюю поверхность корпуса статора, сопряженного с атмосферой, с внутренней центральной полостью машины, которая находится между внутренней поверхностью центрального опорного диска и внешней стороной вала и расположена соосно как с полостями, образованными внешней стороной вала и внутренними поверхностями магнитопроводов статоров, так и с осевыми вентиляционными каналами, проходящими вдоль внутренних поверхностей магнитопроводов роторов, соединенными с сетью радиальных вентиляционных каналов, проходящими под опорными поверхностями магнитопроводов роторов, выходящих на наружные поверхности кольцевых дисков ротора. 5 з.п. ф-лы, 2 ил.

Изобретение относится к электротехнике, к самотормозящимся сдвоенным аксиальным асинхронным электродвигателям с двухдисковым статором и двухдисковым ротором.

Известна двусторонняя торцовая асинхронная электрическая машина со встроенным тормозным устройством (патент РФ №2290735, 2006 г.), содержащая сборный корпус с центральной кольцевой полостью, магнитопроводы статора и ротора с обмотками, вал ротора и его подшипники, тормозное устройство и его пружину. При этом вал ротора электрической машины выполнен составным из двух частей, несущих по одному жестко закрепленному диску ротора и сопряженных между собой посредством шлицевого соединения, допускающего малое относительное смещение частей вала вдоль его оси. Тормозное устройство размещено на несущем щите корпуса электрической машины и включается в режим торможения под действием пружины после отключения электропитания обмотки магнитопровода статора. При этом на каждой из частей вала ротора, сопряженных между собой, установлен отдельный подшипник, с наружным кольцом которого связана втулка, входящая в отверстие цилиндрического стакана корпуса статора и имеющая возможность малого осевого смещения относительно корпуса статора совместно с подшипником и частью вала ротора, на которой установлен подшипник.

Эта электрическая машина отличается малыми осевыми габаритами, высокой нагрузочной способностью. Самовентиляционная система охлаждения машины функционирует за счет поступления вовнутрь центральной кольцевой полости машины охлаждающих воздушных потоков через отверстия ограждающих решеток и отверстия в дисках ротора и выброса нагретого воздуха наружу под действием цетробежных сил, возникающих при вращении ротора, через окна, выполненные в ободе корпуса статора.

Однако для аксиальной конструкции магнитопроводов характерным является то, что магнитное сопротивление магнитопроводов в радиальном направлении изменяется (из-за изменяющейся геометрии магнитопроводов в радиальном направлении) и магнитный поток в магнитопроводах замыкается по пути с наименьшим магнитным сопротивлением, повышая тем самым намагниченность областей зубцов и ярма, находящихся ближе к внутренним диаметрам магнитопроводов. Это ведет к дополнительному тепловыделению этих наиболее насыщенных участков магнитопроводов с находящимися там обмотками (Игнатов В.А., Вильданов К.Я. Торцовые асинхронные электродвигатели интегрального изготовления. - М. Энергоатомиздат, 1988 - 304 с.: ил., с. 297). Дополнительный повышенный нагрев зоны внутренней лобовой части нижнего магнитопровода статора с находящейся там обмоткой ведет к ускорению процессов старения ее изоляции в этой области и уменьшению срока службы. Это ведет к преждевременному выходу изоляции проводов обмоток из строя и уменьшению эксплуатационной надежности и долговечности работы электрической машины.

Кроме этого ее конструкция имеет большое число составных деталей со сложной геометрической формой (например, ротор и его вал, который состоит из двух частей), что ведет к достаточно сложной технологии его изготовления.

Помимо этого выходные валы ротора выполнены подвижными относительно корпуса, что ведет к усложнению сопряжения электрической машины с рабочим механизмом и требует повышенной точности установки. Большое число взаимно перемещающихся составных деталей со сложной геометрией и повышенные требования к точности установки и в том числе электрической машины по отношению к приводному механизму, наличие осевых усилий, действующих на радиально-упорные подшипники в процессе пуска и торможения, в целом снижают эксплуатационную надежность электрической машины.

Наиболее близким по технической сущности к заявленному изобретению является сдвоенная аксиальная асинхронная электрическая машина со встроенным тормозным устройством (патент РФ №2558704, 2015 г.). Сдвоенная аксиальная асинхронная электрическая машина со встроенным тормозным устройством содержит сборный симметричный корпус с центральной кольцевой полостью, статор, ротор, магнитопроводы статора и ротора с обмотками, боковые щиты с подшипниками, вал ротора, тормозное устройство и пружину, корпус статора в форме наружного цилиндрического обода составляет единое целое с центральным опорным диском, на аксиальных поверхностях которого жестко закреплены магнитопроводы статора с обмотками, вал ротора выполнен двухступенчатым, причем расстояние между заплечниками, расположенными ближе к центру вала, больше расстояния между внешними аксиальными поверхностями магнитопроводов статоров на величину, в два раза превышающую величину рабочего воздушного зазора, при этом пакеты роторов выполнены в форме кольцевых дисков с установленной между ними на валу тормозной пружиной с возможностью их аксиального перемещения вдоль оси. Вал ротора крепится в боковых щитах двигателя при помощи радиальных подшипников, наружные кольца каждого из которых входят в отверстие боковых щитов корпуса статора, а внутренние кольца упираются в заплечники, расположенные ближе к концам вала ротора. Между каждой из внутренних аксиальных поверхностей пакетов роторов и заплечниками, расположенными ближе к центру вала ротора, образованы зазоры, равные величине встречного смещения пакетов роторов по шлицам вала ротора при подключении обмоток магнитопроводов статора к сети.

Данная электрическая машина отличается малыми осевыми габаритами, высокой нагрузочной способностью и при этом ее конструкция достаточно проста и технологична. Самовентиляционная система охлаждения машины функционирует за счет поступления вовнутрь центральной кольцевой полости машины охлаждающих воздушных потоков через вентиляционные отверстия в боковых щитах корпуса статора, отверстий в ступицах роторов, радиальных вентиляционных каналов. Выброс нагретого воздуха наружу происходит под действием центробежных сил, возникающих при вращении ротора, через вентиляционные отверстия обода корпуса статора. Охлаждение тепловыделяющих элементов приводного электродвигателя происходит за счет конвективного теплообмена между нагретыми областями и движущимся относительно них воздухом.

Однако для аксиальной конструкции магнитопроводов характерным является то, что магнитное сопротивление магнитопроводов в радиальном направлении изменяется (из-за изменяющейся геометрии магнитопроводов в радиальном направлении) и магнитный поток в магнитопроводах замыкается по пути с наименьшим магнитным сопротивлением, повышая тем самым намагниченность областей зубцов и ярма, находящихся ближе к внутренним диаметрам магнитопроводов. Это ведет к дополнительному тепловыделению этих наиболее насыщенных участков магнитопроводов с находящимися там обмотками (Игнатов В.А., Вильданов К.Я. Торцовые асинхронные электродвигатели интегрального изготовления. - М. Энергоатомиздат, 1988 - 304 с.: ил., с. 297). Дополнительный повышенный нагрев зоны внутренней лобовой части нижнего магнитопровода статора с находящейся там обмоткой ведет к ускорению процессов старения ее изоляции в этой области и уменьшению срока службы. Это ведет к преждевременному выходу изоляции проводов обмоток из строя и уменьшению эксплуатационной надежности и долговечности работы электрической машины.

Заявляемое изобретение решает задачу повышения эффективности охлаждения внутренних участков магнитопроводов с находящимися там обмотками.

Технический результат заключается в повышении времени непрерывной работы, эксплуатационной надежности и долговечности работы электрической машины.

Технический результат достигается тем, что самотормозящийся сдвоенный аксиальный асинхронный электродвигатель содержит статор и ротор, где статор состоит из тормозного устройства, сборного симметричного корпуса в форме наружного цилиндрического обода с неподвижно закрепленными на нем боковыми щитами с подшипниками, который составляет единое целое с центральным опорным диском, на аксиальных поверхностях которого неподвижно закреплены магнитопроводы статора с обмотками, а ротор состоит из двух пакетов роторов в форме кольцевых дисков с вентиляционными лопатками на наружных поверхностях, содержащих магнитопроводы роторов с обмотками, с установленной между ними на валу тормозной пружиной с возможностью их аксиального перемещения вдоль оси, вала ротора, выполненного двухступенчатым, причем расстояние между заплечниками, расположенными ближе к центру вала, больше расстояния между внешними аксиальными поверхностями магнитопроводов статоров на величину, в два раза превышающую величину рабочего воздушного зазора, при этом внутри центрального опорного диска выполнена сеть радиальных вентиляционных каналов, проходящих под опорными поверхностями магнитопроводов статоров, соединяющих внешнюю поверхность корпуса статора, сопряженного с атмосферой, с внутренней центральной полостью машины, которая находится между внутренней поверхностью центрального опорного диска и внешней стороной вала и расположена соосно как с полостями, образованными внешней стороной вала и внутренними поверхностями магнитопроводов статоров, так и с осевыми вентиляционными каналами, проходящими вдоль внутренних поверхностей магнитопроводов роторов, соединенными с сетью радиальных вентиляционных каналов, проходящими под опорными поверхностями магнитопроводов роторов, выходящих на наружные поверхности кольцевых дисков ротора.

Вал ротора крепится в боковых щитах двигателя при помощи радиальных подшипников, наружные кольца каждого из которых входят в отверстие боковых щитов корпуса статора, а внутренние кольца упираются в заплечники, расположенные ближе к концам вала ротора.

Между каждой из внутренних аксиальных поверхностей пакетов роторов и заплечниками, расположенными ближе к центру вала ротора, образованы зазоры, равные величине встречного смещения пакетов роторов по шлицевым соединениям при подключении обмоток магнитопроводов статора к сети.

Тормозная пружина упирается обоими своими торцами через надетые на вал ротора упорные кольца.

Наружный цилиндрический обод корпуса статора с внешних сторон содержит отверстия для контроля над состоянием и толщиной тормозных накладок, одновременно служащие дополнительными вентиляционными отверстиями.

Пакеты роторов сопряжены с валом ротора посредством шлицевых соединений.

Повышение эффективности охлаждения внутренних участков магнитопроводов статоров с находящимися там обмотками происходит за счет повышения интенсивности охлаждения этих участков при работающем электродвигателе. Это осуществляется благодаря конструктивным особенностям, которые позволили изменить направление движения охлаждающих воздушных потоков и сделали циркуляцию охлаждающих воздушных потоков принудительной через наиболее напряженные в тепловом отношении зоны внутренних участков магнитопроводов статоров с находящимися там обмотками.

В предлагаемой конструкции охлаждающие воздушные потоки будут попадать в кольцевую полость двумя путями. Одни потоки будут проходить через вентиляционные отверстия в боковых щитах корпуса статора и охлаждать диски роторов и тормозные устройства, а вторые будут проходить через сеть радиальных вентиляционных каналов, выполненных внутри центрального опорного диска, проходящих под опорными поверхностями магнитопроводов статоров, внутреннюю центральную полость машины, полости, образованные внешней стороной вала и внутренними поверхностями магнитопроводов статора, внутренние лобовые части обмоток статоров, осевые вентиляционные каналы, соединенные с сетью радиальных вентиляционных каналов, проходящими под опорными поверхностями магнитопроводов роторов, выходящих на наружные поверхности дисков ротора с расположенными там вентиляционными лопатками, с последующим выбросом нагретого воздуха наружу под действием центробежных сил, возникающих при вращении ротора, через вентиляционные отверстия обода корпуса статора.

Дополнительное охлаждение наиболее напряженных в тепловом отношении зон внутренних участков магнитопроводов статоров с находящимися там обмотками за счет принудительной циркуляции охлаждающих потоков ведет к уменьшению перегрева изоляции проводов и, как следствие, к увеличению срока ее службы, а также увеличению времени непрерывной работы. Увеличение срока службы изоляции проводов ведет к увеличению эксплуатационной надежности и долговечности работы машины в целом.

Сущность изобретения поясняется чертежами.

На фиг. 1 показан общий вид самотормозящегося сдвоенного аксиального асинхронного электродвигателя.

На фиг. 2 показан вид сбоку самотормозящегося сдвоенного аксиального асинхронного электродвигателя.

Сборный корпус самотормозящегося сдвоенного аксиального асинхронного электродвигателя состоит из корпуса статора 1, имеющего центральный опорный диск 2, выполненный единым с наружным цилиндрическим ободом 3, и двух симметрично расположенных боковых щитов 4 и 5, неподвижно закрепленных к ободу 3 корпуса статора 1 винтами 6 и несущих тормозные кольцевые накладки 7. Накладки 7, оснащенные подложками 8, жестко связаны с резьбовыми втулками 9, имеющими кольцевые выступы с регулировочными прокладками 10. Весь этот узел составляет тормозное устройство и крепится в боковых щитах 4 и 5 корпуса статора 1 внутри его центральной кольцевой полости при помощи винтов 11, вкрученных в резьбовые втулки 9 с внешней стороны боковых щитов 4 и 5.

Центральный опорный диск 2 корпуса статора 1 разделяет центральную кольцевую полость машины на две симметрично расположенные области, в которых размещены магнитопроводы статора 12, 13 с m-фазными обмотками возбуждения 14 и пакеты роторов, выполненных в форме кольцевых дисков, состоящих из магнитопроводов ротора 15, 16 с короткозамкнутыми обмотками 17, жестко закрепленных на ступицах роторов 18, 19.

К наружным аксиальным плоскостям пакетов роторов посредством винтов 20 жестко присоединены кольцевые закаленные пластины 21, 22, которые в обесточенном состоянии m-фазных обмоток возбуждения 14 магнитопроводов статора 12, 13 плотно прилегают к тормозным кольцевым накладкам 7 боковых щитов 4, 5.

Вал ротора 23 выполнен цельным и ступенчатым, имеющим два выступа с увеличивающимися диаметрами от краев к центру, базируется на радиальных подшипниках 24, 25, с наружными кольцами которых связаны боковые щиты 4 и 5, а внутренние кольца фиксированы заплечниками 26, 27 вала ротора 23, и соединенный с магнитопроводами ротора 15, 16 через ступицы 18, 19 посредством шлицевых соединений 28, 29 с возможностью их осевых перемещений под воздействием тормозной пружины 30. Перемещения пакетов роторов ограничиваются в выключенном состоянии тормозными кольцевыми накладками 7, а во включенном состоянии, при сжатой тормозной пружине 30, - заплечниками 31, 32 вала ротора 23, выполненными таким образом, что расстояние между ними обеспечивает рабочие воздушные зазоры δ между магнитопроводом статора 12 и магнитопроводом ротора 15, магнитопроводом статора 13 и магнитопроводом ротора 16, при этом расстояние между заплечниками 31, 32 вала ротора 23 больше расстояния между внешними аксиальными поверхностями магнитопроводов статоров 12, 13 на величину 2 δ.

Тормозная пружина 30 размещена на валу ротора 23 и упирается своими торцами через упорные кольца 33, 34 в ступицы роторов 18 и 19. Упорные кольца 33, 34 служат для равномерного распределения усилия тормозной пружины 30 по внутренней аксиальной поверхности ступиц роторов 18, 19.

Вал ротора 23 имеет выходные шлицевые отверстия 35, 36 для присоединения приводного механизма.

В машине реализована самовентиляционная система охлаждения, включающая сеть вентиляционных отверстий 37 (фиг. 2), выполненных в боковых щитах 4, 5 корпуса статора 1, сеть радиальных вентиляционных каналов 38 - под опорными поверхностями магнитопроводов ротора 15, 16, осевые вентиляционные каналы 39 - в дисках роторов, вентиляционные лопатки 40, 41 - на наружных поверхностях дисков роторов, сеть радиальных вентиляционных каналов 42, проходящих через центральный опорный диск 2 под опорными поверхностями магнитопроводов статоров 12, 13 и наружный цилиндрический обод 3, соединяющие внешнюю поверхность корпуса статора 1, сопряженного с атмосферой, с внутренней центральной полостью машины 43 (фиг. 1).

Причем осевые вентиляционные каналы 39, проходящие вдоль внутренних поверхностей магнитопроводов ротора 15, 16, расположены соосно с внутренней центральной полостью машины 43 с возможностью прохождения охлаждающих потоков воздуха от внутренней центральной полости машины 43 через полости 44, 45, образованные внешней стороной вала 23 и внутренними поверхностями магнитопроводов статоров 12, 13, внутренние лобовые части m-фазных обмоток возбуждения 14 к осевым вентиляционным каналам 39.

Для подвода охлаждающего воздуха в центральную полость машины служат вентиляционные отверстия 37 (фиг. 2), а для выброса нагретых воздушных масс из полости машины предназначены вентиляционные отверстия 46, 47 наружного цилиндрического обода 3 корпуса статора 1. Отверстия 47 используются также для контроля над состоянием тормозных кольцевых накладок 7.

Самотормозящийся сдвоенный аксиальный асинхронный электродвигатель работает следующим образом.

В процессе сборки электродвигателя путем выбора толщины регулировочных прокладок 10 добиваются требуемых величин зазоров Δ между внутренними аксиальными поверхностями ступиц роторов 18, 19 и заплечниками 31, 32 вала ротора 23, которые обеспечиваются в собранной конструкции электродвигателя за счет разжимающего действия тормозной пружины 30. Величины зазоров Δ будут выбираться исходя из технических требований для каждого конкретного электропривода, так как будут влиять на быстродействие срабатывания при пуске и торможении электродвигателя (чем меньше величины зазоров Δ, тем меньше время срабатывания электродвигателя). При этом тормозные кольцевые накладки 7, оснащенные подложками 8, будут жестко связаны с резьбовыми втулками 9, имеющими кольцевые выступы с регулировочными прокладками 10 требуемой толщины, а тормозное устройство будет крепиться в боковых щитах 4 и 5 корпуса статора 1 внутри его центральной кольцевой полости при помощи винтов 11, вкрученных в резьбовые втулки 9 с внешней стороны боковых щитов 4 и 5. После процесса сборки щиты 4 и 5 будут неподвижно закреплены к ободу 3 корпуса статора 1 винтами 6.

При подключении напряжения к m-фазным обмоткам возбуждения 14 магнитопроводов статора 12, 13 возникает пусковой ток, превышающий номинальный ток рабочего режима машины, вследствие чего возникает магнитное поле, под воздействием осевых электромагнитных сил которого пакеты роторов совершают встречное осевое смещение по шлицевым соединениям 28, 29 на валу ротора 23 к заплечникам 31, 32, и пакеты роторов отодвинутся от тормозного устройства и полностью растормозятся.

Одновременно с этим основной магнитный поток пересекает магнитопроводы ротора 15, 16 с короткозамкнутыми обмотками 17 и наводит в них ЭДС. Так как короткозамкнутые обмотки 17 образуют замкнутые контуры, то по ним будет протекать ток. Вращающееся магнитное поле при взаимодействии с токами, протекающими по короткозамкнутым обмоткам 17 роторов, приведет к возникновению крутящего момента (по закону Ампера), который будет действовать на пакеты роторов. Крутящий момент от пакетов роторов через шлицевые соединения 28, 29, вал ротора 23 и выходные шлицевые отверстия 35, 36 будет передаваться к приводному механизму. При этом тормозная пружина 30 получает дополнительное сжатие, а зазоры Δ между внутренними аксиальными поверхностями ступиц роторов 18, 19 и заплечниками 31, 32 вала ротора 23 уменьшаются. Между пластинами 21, 22, неподвижно закрепленными к наружным аксиальным плоскостям пакетов роторов с помощью винтов 20, и тормозными кольцевыми накладками 7 образуются зазоры, равные величине Δ, а между аксиальными рабочими поверхностями магнитопроводов статора 12, 13 и ротора 15, 16 устанавливаются рабочие зазоры δ, сохраняющиеся в процессе вращения ротора, которое он получает в результате действия вращающегося магнитного поля.

Осевые силы притяжения магнитопроводов статора 12, 13 и ротора 15, 16 превышают силу сжатия тормозной пружины 30, поэтому между внутренними аксиальными поверхностями ступиц роторов 18, 19, упорными кольцами 33, 34 и тормозной пружиной 30 возникают усилия взаимодействия, равные разности силы притяжения магнитопроводов статора 12, 13 и ротора 15, 16 и силы сжатия тормозной пружины 30, которые воспринимаются заплечниками 31, 32 вала ротора 23. Так как силы притяжения двух пакетов роторов равны по модулю, но направлены встречно, то они взаимно компенсируются заплечниками 31, 32 вала ротора 23 и не будут передаваться далее через заплечники 26, 27 на радиальные подшипники 24, 25 вала ротора 23, тем самым полностью их разгрузят, что положительно отражается на ресурсе и долговечности электрической машины.

Самовентиляционная система охлаждения электродвигателя функционирует за счет поступления вовнутрь центральной кольцевой полости машины охлаждающих воздушных потоков двумя путями. Одни потоки будут проходить через вентиляционные отверстия 37 в боковых щитах 4, 5 корпуса статора 1 и охлаждать диски роторов и тормозные устройства, а вторые будут проходить через сеть радиальных вентиляционных каналов 42, выполненных внутри центрального опорного диска 2, проходящих под опорными поверхностями магнитопроводов статоров 12, 13, внутреннюю центральную полость машины 43, полости 44, 45, образованные внешней стороной вала 23 и внутренними поверхностями магнитопроводов статоров 12, 13, внутренние лобовые части m-фазных обмоток возбуждения 14, осевые вентиляционные каналы 39, соединенные с сетью радиальных вентиляционных каналов 38, проходящих под опорными поверхностями магнитопроводов ротора 15, 16, выходящих на наружные поверхности дисков роторов с расположенными там вентиляционными лопатками 40, 41 (фиг. 1). Далее нагретый воздух выталкивается наружу под действием центробежных сил, возникающих при вращении ротора, через вентиляционные отверстия 46, 47 наружного цилиндрического обода 3 корпуса статора 1.

При отключении питающего напряжения от m-фазных обмоток возбуждения 14 исчезает магнитный поток, удерживающий пакеты роторов в рабочем положении. Вследствие этого тормозная пружина 30 вызывает обратное взаимное осевое смещение их по шлицевым соединениям 28, 29 вдоль вала 23. При этом каждый пакет ротора входит в контакт со своей тормозной накладкой, а между внутренними аксиальными поверхностями ступиц роторов 18, 19 и заплечниками 31, 32 вала ротора 23 образуются зазоры, равные величине Δ. В результате трения поверхностей закаленных пластин 21, 22 пакетов роторов и тормозных кольцевых накладок 7 происходит остановка ротора.


Самотормозящийся сдвоенный аксиальный асинхронный электродвигатель
Самотормозящийся сдвоенный аксиальный асинхронный электродвигатель
Самотормозящийся сдвоенный аксиальный асинхронный электродвигатель
Источник поступления информации: Роспатент

Showing 241-250 of 490 items.
10.05.2018
№218.016.44bb

Устройство для определения места повреждения кабеля

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Устройство содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, установленный в центре свинцового контейнера в расположенном...
Тип: Изобретение
Номер охранного документа: 0002650081
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.44e3

Функциональный преобразователь

Изобретение относится к цифровой вычислительной технике и может найти применение для аппаратной реализации. Технический результат заключается в расширении класса реализуемых функций. Функциональный преобразователь содержит пять сумматоров-вычитателей, три регистра, блок анализа, блок...
Тип: Изобретение
Номер охранного документа: 0002649955
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.455b

Способ изготовления магнитопроводов аксиальных электрических машин

Изобретение относится к области электротехники, а именно к технологии изготовления электрических машин, и может быть использовано при изготовлении магнитопроводов пакетов статора и ротора для аксиальных электрических машин. Технический результат заключается в выравнивании магнитного...
Тип: Изобретение
Номер охранного документа: 0002650104
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.46af

Способ производства мягких вафель

Изобретение относится к пищевой промышленности. Способ производства мягких вафель включает смешивание компонентов и замес теста, содержащего вкусовой наполнитель, жировой компонент, меланж, муку, его формование и выпечку. При приготовлении теста дополнительно вносят муку из корневищ сусака...
Тип: Изобретение
Номер охранного документа: 0002650543
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.46e4

Состав для производства мармелада

Изобретение относится к пищевой промышленности, в частности к кондитерской, а именно композициям для производства мармелада. Состав для производства мармелада, включающий патоку, сахар, желирующий компонент, пищевую кислоту, биологически активный компонент, дополнительно содержит стевиозид, в...
Тип: Изобретение
Номер охранного документа: 0002650549
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4716

Устройство для перегонки эфирных масел из эфирномасличного зернового сырья

Изобретение относится к эфирномасличному производству. Устройство для перегонки эфирных масел из эфирномасличного зернового сырья включает цилиндрический вертикальный корпус с верхней сферической крышкой с патрубком для отвода вторичных паровой и нижним сферическим днищем, загрузочное...
Тип: Изобретение
Номер охранного документа: 0002650556
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4750

Состав для изготовления драже

Изобретение относится к пищевой промышленности, в частности к кондитерской, и может быть использовано при производстве сахарного драже. Состав для изготовления драже содержит следующее соотношение компонентов, г на одно драже массой 0,4 г: экстракт гинкго - 0,05-0,2; в качестве функционального...
Тип: Изобретение
Номер охранного документа: 0002650548
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4761

Система определения геометрических параметров трехмерных объектов

Предложенное изобретение относится к области бесконтактных измерений контуров или кривых трехмерных объектов в реальном масштабе времени. Система определения геометрических параметров трехмерных объектов содержит первую цифровую камеру и вторую цифровую камеру, образующих стереокамеру, датчик...
Тип: Изобретение
Номер охранного документа: 0002650857
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.47d0

Контроллер оценки и прогнозирования сохраняемости объектов со структурной неоднородностью

Изобретение относится к метрологии, в частности к устройствам бесконтактной дефектоскопии. Контроллер оценки и прогнозирования сохраняемости объектов со структурной неоднородностью содержит фильтр, запоминающее устройство, компаратор, выходной интерфейс. Второй выход компаратора связан со...
Тип: Изобретение
Номер охранного документа: 0002650733
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.481a

Источник радиоизлучения

Изобретение относится к физике электромагнитных явлений, а именно к устройствам для излучения электромагнитных волн и может быть использовано в экспериментах по исследованию радиоизлучения источников, движущихся с высокими (вплоть до релятивистских) скоростями, а также в экспериментах в области...
Тип: Изобретение
Номер охранного документа: 0002650773
Дата охранного документа: 17.04.2018
Showing 241-242 of 242 items.
03.06.2023
№223.018.768e

Нереверсивная схема управления самотормозящегося асинхронного электродвигателя со смещающимся короткозамкнутым ротором

Изобретение относится к области электротехники и может быть использовано для приведения в действие электропривода с самотормозящимся асинхронным электродвигателем со смещающимся ротором. Технический результат заключается в улучшении эксплуатационных характеристик, а именно в уменьшении пусковых...
Тип: Изобретение
Номер охранного документа: 0002796580
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.769c

Реверсивная схема управления самотормозящегося асинхронного электродвигателя со смещающимся короткозамкнутым ротором

Изобретение относится к области электротехники и может быть использовано для приведения в действие электропривода с самотормозящимся асинхронным электродвигателем со смещающимся ротором. Технический результат заключается в улучшении эксплуатационных характеристик, а именно в уменьшении пусковых...
Тип: Изобретение
Номер охранного документа: 0002796585
Дата охранного документа: 25.05.2023
+ добавить свой РИД