×
13.02.2018
218.016.21b6

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПИТАНИЯ РАКЕТНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002641791
Дата охранного документа
22.01.2018
Аннотация: Изобретение относится к устройству питания камер ракетных двигателей (100) первым и вторым компонентами ракетного топлива. Первый контур (16) питания создающей тягу камеры (10) включает в себя турбонасос (22), имеющий по меньшей мере один насос (22a) для перекачки первого компонента ракетного топлива из первого бака (12) и турбину (22b), механически соединенную с упомянутым насосом (22a). Первый контур питания соединяет выход насоса с входом турбины через теплообменник (24), выполненный с возможностью нагревания первого компонента ракетного топлива теплом, создаваемым создающей тягу камерой, для того, чтобы привести в действие турбину. В соответствии с настоящим изобретением второй контур (18) питания выполнен с возможностью питания создающей тягу камеры вторым компонентом ракетного топлива из второго бака (14), который выполнен с возможностью поддержания повышенного давления. Настоящее изобретение также предлагает способ питания создающей тягу камеры ракетного двигателя первым и вторым компонентами ракетного топлива. Изобретение обеспечивает повышение давления в баках, содержащих компоненты ракетного топлива. 2 н. и 11 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к области питания ракетных двигателей, и в частности оно относится к устройству питания для питания создающей тягу камеры по меньшей мере одним первым компонентом ракетного топлива и по меньшей мере одним вторым компонентом ракетного топлива.

В приведенном ниже описании термины «выше по потоку» и «ниже по потоку» определяются относительно нормального направления потока компонента ракетного топлива в контуре питания.

УРОВЕНЬ ТЕХНИКИ

В ракетных двигателях тяга обычно создается горячими газообразными продуктами сгорания, расширяющимися в сопле создающей тягу камеры, производимыми за счет экзотермической химической реакции внутри создающей тягу камеры. Таким образом, при работе в создающей тягу камере существует высокое давление. Для того, чтобы можно было продолжать питать создающую тягу камеру, несмотря на это высокое давление, компоненты ракетного топлива должны вводиться в создающую тягу камеру под еще более высокими давлениями. Для этой цели в современном уровне техники известны различные средства.

Одно известное решение заключается в использовании турбонасосов. Турбонасос включает в себя по меньшей мере один насос, приводимый в действие турбиной. В двигателях, использующих так называемый расширительный цикл, турбина приводится в действие одним из компонентов ракетного топлива после того, как он прошел через теплообменник, в котором он нагревается теплом, образующимся в создающей тягу камере. Таким образом, этот теплоперенос может одновременно способствовать охлаждению стенок создающей тягу камеры и приводить в действие турбонасос.

Тем не менее, использование двигателей с расширительным циклом является ограниченным.

Начиная с некоторого уровня тяги энергия, доступная для питания турбины, ограничивается способностью к извлечению теплового потока посредством теплообменника. Для того, чтобы преодолеть это ограничение, необходимо увеличивать длину и массу создающей тягу камеры.

Кроме того, чтобы управлять соотношением смешивающихся компонентов ракетного топлива, что достигается путем воздействия на скорость (скорости) потока через турбину, необходимы другие элементы и конструкции.

Другое решение заключается в повышении давления в баках, содержащих компоненты ракетного топлива. Однако этот подход накладывает ограничение на максимальное давление, которое может быть достигнуто в создающей тягу камере, и таким образом накладывает ограничение на удельный импульс ракетного двигателя. Другой недостаток этого решения заключается в использовании низкоэффективных компонентов ракетного топлива, которые являются плотными для того, чтобы ограничить массу текучих сред, используемых для повышения давления. Компоненты ракетного топлива низкой плотности приводят к использованию баков большого объема, которые поэтому требуют большой массы газа для повышения давления, что приводит к увеличению общей массы ракетного двигателя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задача настоящего изобретения состоит в том, чтобы исправить вышеупомянутые недостатки, по меньшей мере, существенно.

Эта задача решается устройством питания для питания создающей тягу камеры ракетного двигателя по меньшей мере одним первым компонентом ракетного топлива и по меньшей мере одним вторым компонентом ракетного топлива, причем это устройство включает в себя по меньшей мере один первый бак для вмещения первого компонента ракетного топлива, по меньшей мере один второй бак для вмещения второго компонента ракетного топлива, по меньшей мере один первый контур питания для питания создающей тягу камеры, соединенный с первым баком, и по меньшей мере один второй контур питания для питания создающей тягу камеры, соединенный со вторым баком, за счет того факта, что упомянутый первый контур питания включает в себя по меньшей мере один турбонасос с по меньшей мере одним насосом для перекачки первого компонента ракетного топлива и по меньшей мере одну турбину, механически соединенную с упомянутым насосом, упомянутый первый контур питания, соединяющий выход насоса с входом турбины турбонасоса через теплообменник, выполненный с возможностью нагревания первого компонента ракетного топлива теплом, создаваемым создающей тягу камерой, для того, чтобы привести в действие турбину турбонасоса за счет расширения первого компонента ракетного топлива в результате нагрева, за счет того факта, что упомянутый второй контур питания выполнен с возможностью питания создающей тягу камеры через входной клапан вторым компонентом ракетного топлива из второго бака, который выполнен с возможностью повышения в нем давления до давления выше, чем давление, которое существует в создающей тягу камере, для того, чтобы питать упомянутую создающую тягу камеру, и за счет того факта, что упомянутый входной клапан второго контура питания является регулируемым клапаном, который служит для регулирования скорости потока и таким образом количества второго компонента ракетного топлива, питающего создающую тягу камеру.

Понятно, что ракетный двигатель имеет обычную создающую тягу камеру, в которую вводятся первый и второй компоненты ракетного топлива. Таким образом, горячий газ, получающийся в результате сгорания этих двух компонентов ракетного топлива, расширяется и выбрасывается из создающей тягу камеры для того, чтобы обеспечить ракетному двигателю тягу.

Также понятно, что теплообменник служит как для того, чтобы нагреть первый компонент ракетного топлива так, чтобы перевести его в газообразную фазу и охладить стенку создающей тягу камеры, передавая тепло от продуктов сгорания к первому компоненту ракетного топлива, проходящему через теплообменник.

Таким образом, горячий первый компонент ракетного топлива, выходящий из теплообменника, расширяется в турбине, приводя ее тем самым в действие, что в свою очередь приводит в действие насос.

Такая работа первого контура питания представляет собой так называемый расширительный цикл.

Также понятно, что второй компонент ракетного топлива, питающий создающую тягу камеру, содержится во втором баке под повышенным давлением, которое выше, чем давление, существующее в создающей тягу камере, и что скорость потока и количество второго компонента ракетного топлива, питающего создающую тягу камеру, регулируются с помощью регулируемого входного клапана.

При этих условиях структура второго контура питания для питания создающей тягу камеры вторым компонентом ракетного топлива упрощается по сравнению с использованием турбонасоса. Вся мощность, извлеченная путем расширения первого компонента ракетного топлива после выхода из теплообменника, может использоваться для перекачки только первого компонента ракетного топлива. В дополнение к этому, эти условия позволяют иметь хороший контроль над соотношением смешивания этих двух компонентов ракетного топлива путем использования входного клапана второго контура питания, который позволяет регулировать скорость потока и таким образом количество находящегося под давлением второго компонента ракетного топлива, которое вводится в создающую тягу камеру. Регулируемый входной клапан позволяет достичь хорошего управления коэффициентом смешения этих компонентов ракетного топлива при питании создающей тягу камеры.

Кроме того, посредством этих условий находящийся под повышенным давлением второй бак, содержащий второй компонент ракетного топлива, может быть расположен вокруг создающей тягу камеры и больше нет необходимости в том, чтобы второй бак был выше создающей тягу камеры, как в том случае, когда для повышения давления ракетного топлива используется турбонасос. Это становится возможным за счет того факта, что второй компонент ракетного топлива не подается насосом, который без соблюдения соответствующих размеров и расположения мог бы подвергнуться риску кавитации. Это таким образом способствует сокращению общего размера устройства питания. Выгодным является то, что второй бак может быть расположен в частности около создающей тягу камеры, позволяя таким образом получить более компактную структуру для сборки, включающей в себя ракетный двигатель и бак.

Кроме того, это решение сохраняет хорошую эффективность ракетного двигателя, и в частности обеспечивает хороший удельный импульс.

В некоторых вариантах осуществления используется по меньшей мере один третий бак, выполненный с возможностью вмещения сжатого газа, причем упомянутый третий бак соединен со вторым баком посредством редукционного клапана.

Понятно, что сжатый газ из третьего бака обеспечивает давление во втором баке, содержащем второй компонент ракетного топлива. Редукционный клапан позволяет регулировать давление газа, поступающего во второй бак, и таким образом регулировать давление второго компонента ракетного топлива, содержащегося во втором баке.

В некоторых вариантах осуществления первый контур питания включает в себя бустерный насос (насос высокого давления), соединенный с турбиной, которая выполнена с возможностью приведения ее в действие за счет расширения сжатого газа, причем упомянутый бустерный насос расположен ниже по потоку от первого бака и выше по потоку от турбонасоса.

Понятно, что бустерный насос служит для того, чтобы повысить давление турбонасоса. Увеличение давления позволяет поддерживать по меньшей мере минимальное давление на входе для первого компонента ракетного топлива в насосе турбонасоса и избежать кавитационных явлений, в частности в конце опустошения первого бака, когда это может предотвратить использование первого компонента ракетного топлива, содержащегося в первом баке.

В некоторых вариантах осуществления упомянутая турбина, соединенная с бустерным насосом, расположена ниже по потоку от третьего бака и выше по потоку от второго бака для второго компонента ракетного топлива.

Понятно, что турбина бустерного насоса приводится в действие сжатым газом, содержащимся в третьем баке. Этот газ затем нагнетается во второй бак для того, чтобы повысить в нем давление.

В некоторых вариантах осуществления первый компонент ракетного топлива входит в турбонасос в направлении тяги создающей тягу камеры.

Посредством такой компоновки оптимизируется размещение контура высокого давления. Выход из турбонасоса и выход из теплообменника располагаются рядом соответственно со входом теплообменника и со входом турбины турбонасоса. Такая компоновка становится возможной за счет установки вышеупомянутого бустерного насоса, который позволяет избежать кавитационных явлений на входе турбонасоса, который в противном случае был бы в положении «вверх ногами» и мог бы потребовать линии с изгибом между бустерным насосом и входом главного насоса.

В некоторых вариантах осуществления второй бак сделан из металла.

В некоторых вариантах осуществления второй бак сделан из армированного композиционного материала.

Для того, чтобы удерживать давление во втором баке и избежать его деформирования, структура из композиционного материала укрепляется, например, путем обмотки.

Кроме того, второй бак, сделанный из армированного композиционного материала, позволяет второму компоненту ракетного топлива на входе камеры достигать более высокого давления, чем можно достичь с металлическим баком, позволяя тем самым достичь более высокого давления в камере.

В некоторых вариантах осуществления компоненты ракетного топлива могут быть криогенными. В частности первый компонент ракетного топлива может быть жидким водородом, а второй компонент ракетного топлива может быть жидким кислородом.

При этих условиях, поскольку плотность жидкого кислорода является высокой по сравнению с плотностью жидкого водорода, второй бак таким образом имеет меньший объем, чем водородный бак, и следовательно масса газа для обеспечения давления ограничивается, и таким образом объем третьего бака для повышения давления во втором баке ограничивается по сравнению с ситуацией, в которой во втором баке хранится жидкий водород.

В некоторых вариантах осуществления сжатый газ является гелием.

Этот газ имеет то преимущество, что он практически является инертным. Кроме того, когда этот газ нагнетается во второй бак, он остается в газообразном состоянии и не конденсируется, даже когда второй компонент ракетного топлива является криогенным.

В некоторых вариантах осуществления первый контур питания включает в себя клапан питания, расположенный ниже по потоку от турбонасоса и выше по потоку от теплообменника.

В некоторых вариантах осуществления первый контур включает в себя перепускной клапан, расположенный ниже по потоку от теплообменника и выше по потоку от входа в создающую тягу камеру.

В некоторых вариантах осуществления перепускной клапан является регулируемым.

Понятно, что когда перепускной клапан открыт, часть первого компонента ракетного топлива, выходящего из теплообменника, проходит через этот клапан и попадает непосредственно в создающую тягу камеру, не питая турбину турбонасоса. Посредством этого регулируется скорость потока и таким образом количество первого компонента ракетного топлива, подаваемого в создающую тягу камеру. Меньшее количество ракетного топлива, питающего турбину, служит для того, чтобы замедлить турбину, и в результате замедлить насос турбонасоса.

В некоторых вариантах осуществления первый контур питания включает в себя двухпозиционный клапан питания, расположенный ниже по поткоу от турбонасоса и выше по потоку от теплообменника.

Понятно, что двухпозиционный клапан служит для открытия или закрытия прохода первого компонента ракетного топлива к теплообменнику. Таким образом, понятно, что двухпозиционный клапан является дополнительным к перепускному клапану, причем перепускной клапан регулирует количество первого компонента ракетного топлива, которое подается в турбину турбонасоса и таким образом в создающую тягу камеру.

Настоящее изобретение также предлагает способ питания создающей тягу камеры ракетного двигателя первым и вторым компонентами ракетного топлива, в котором первый компонент ракетного топлива перекачивается из первого бака к создающей тягу камере через первый контур питания создающей тягу камеры по меньшей мере одним турбонасосом, включающим в себя упомянутые насос и турбину, которая механически соединена с насосом, причем первый контур питания соединяет выход насоса со входом турбины через теплообменник, выполненный с возможностью нагревания первого компонента ракетного топлива теплом, создаваемым в создающей тягу камере, для того, чтобы привести в действие турбину турбонасоса за счет расширения первого компонента ракетного топлива, нагретого в теплообменнике, в котором второй компонент ракетного топлива находится во втором баке под давлением большим, чем внутреннее давление создающей тягу камеры, и в котором второй компонент ракетного топлива выталкивается в создающую тягу камеру под действием внутреннего давления упомянутого второго бака через второй контур питания создающей тягу камеры, связанный со вторым баком, причем упомянутая вторая схема включает в себя входной клапан.

Несколько вариантов осуществления описываются в настоящем описании. Тем не менее, если не определено обратное, характеристики, описанные в отношении любого варианта осуществления или реализации, могут быть применены к другому варианту осуществления или реализации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Настоящее изобретение и его преимущества могут быть лучше поняты при чтении следующего подробного описания вариантов осуществления настоящего изобретения, приведенных в качестве неограничивающих примеров. Настоящее описание ссылается на сопутствующие чертежи, в которых:

Фиг. 1 представляет собой схематическое представление ракетного двигателя, имеющего устройство питания в первом варианте осуществления настоящего изобретения, в котором турбонасос питается первым компонентом ракетного топлива в направлении, противоположном направлению движущей силы создающей тягу камеры ракетного двигателя; и

Фиг. 2 представляет собой схематическое представление ракетного двигателя, включающего в себя устройство питания во втором варианте осуществления настоящего изобретения, в котором турбонасос питается первым компонентом ракетного топлива в направлении движущей силы создающей тягу камеры ракетного двигателя.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Фиг. 1 показывает ракетный двигатель 100, включающий в себя создающую тягу камеру 10 и устройство питания для питания создующей тягу камеры первым и вторым компонентами ракетного топлива в первом варианте осуществления. Создающая тягу камера 10 включает в себя последовательно инжекционный купол 10a для впрыскивания первого компонента ракетного топлива и камеру сгорания 10b, включающую в себя в ее верхней части набор форсунок 10c, через которые подаются первый и второй компоненты ракетного топлива. Камера сгорания 10b завершается расходящейся частью 10d, которая может быть сделана, например, из металла или из композиционного материала. Таким образом, после прохождения через набор форсунок 10c первый компонент ракетного топлива и второй компонент ракетного топлива смешиваются и сгорают в камере сгорания 10b, производя тем самым газообразные продукты сгорания, обеспечивающие тягу ракетного двигателя 100.

Устройство питания создающей тягу камеры 10 включает в себя первый бак 12, содержащий первый компонент ракетного топлива, например криогенный водород в жидкой фазе, хранящийся при температуре приблизительно -253°C. Устройство питания также имеет второй бак 14, содержащий второй компонент ракетного топлива, например криогенный кислород в жидкой фазе, хранящийся при температуре приблизительно -183°C. Кроме того, в этом примере первый бак 12 и второй бак 14 являются цилиндрическими, однако они могут иметь другие формы.

Устройство питания имеет первый контур 16 питания для питания создающей тягу камеры 10 водородом, который соединен с первым баком 12, и такой контур упоминается ниже как «первый» контур, и устройство питания также имеет второй контур 18 питания для питания создающей тягу камеры 10 кислородом, который соединен со вторым баком 14, и такой контур упоминается ниже как «второй» контур.

В первом варианте осуществления первый контур 16 питания имеет обычный клапан 20 питания и турбонасос 22, включающий в себя насос 22a и турбину 22b, причем насос 22a и турбина 22b механически соединены вместе. В этом первом варианте осуществления жидкий водород из первого бака 12 входит в насос 22a в направлении, противоположном направлению P движущей силы создающей тягу камеры 10.

Первый контур 16 питания также имеет теплообменник 24, сформированный в стенке камеры сгорания 10b создающей тягу камеры 10 для того, чтобы охлаждать стенку камеры сгорания 10b, передавая тепло от горячего газа, образующегося при сгорании водорода в кислороде, к жидкому водороду во время его прохождения через теплообменник 24. Этот перенос тепла также способствует нагреванию жидкого водорода, который в газообразной фазе расширяется в турбине 22b, приводя тем самым в движение турбину 22b турбонасоса 22.

Таким образом, первый контур 16 питания для питания водородом создающей тягу камеры 10 функционирует в расширительном цикле.

Этот первый контур 16 питания также имеет перепускную линию 26 с перепускным клапаном 28. Первый контур 16 питания также имеет клапан 27 питания, расположенный ниже по потоку от насоса 22a турбонасоса 22 и выше по потоку от теплообменника 24. В этом примере клапан 27 питания представляет собой двухпозиционный клапан, однако в одном варианте он может быть регулируемым клапаном, служащим для регулирования скорости потока и таким образом количества первого компонента ракетного топлива, которое поступает в камеру сгорания 10b. Таким образом, когда клапан 27 питания является регулируемым клапаном, возможно обойтись без перепускного клапана 28.

Второй контур 18 питания для питания камеры сгорания 10b кислородом включает в себя регулируемый входной клапан 30, позволяющий регулировать скорость потока и таким образом количество кислорода, которое питает упомянутую камеру сгорания 10b.

Давление во втором баке 14, содержащем кислород, повышается сжатым газом, в данном примере гелием, содержащимся в третьем баке 32. Этот третий бак 32 соединяется со вторым баком 14 посредством контура 34 давления, включающего в себя редукционный клапан 36. Настоящее изобретение не ограничивается единственным кислородным баком, и может охватывать множество кислородных баков, например расположенных вокруг создающей тягу камеры 10, где давление в каждом из упомянутых баков повышается повышающим давление газом. В дополнение к этому, в одном варианте кислородный бак (баки) и их соответствующие источники газа могут быть сброшены, как только они будут израсходованы.

Эти условия обеспечивают хорошую эффективность ракетного двигателя, и в частности они позволяют обеспечить хороший удельный импульс, лежащий в диапазоне от 455 с до 465 с, в зависимости от длины расходящейся части 10d.

Второй бак 14, содержащий кислород, может быть сделан из металла, и в этом случае возможно получить давление кислорода на входе в камеру сгорания 10b, равное приблизительно 2 МПа, что делает возможным достижение давления в камере, равного приблизительно 1,5 МПа. Кроме того, второй бак 14 может быть сделан из композиционного материала, укрепленного, например, путем обмотки. Этот тип бака позволяет достичь более высоких давлений в камере, чем в том случае, когда бак сделан из металла. В частности, это позволяет получить давление кислорода на входе в камеру сгорания 10b, равное приблизительно 5 МПа и достичь давления в камере, находящегося в диапазоне от 3 МПа до 4 МПа.

Для того, чтобы питать камеру сгорания 10b водородом, водород перекачивается из первого бака 12 насосом 22a турбонасоса 22. Перекачиваемый водород проходит через двухпозиционный клапан 27 и течет через теплообменник 24. Тепло, создаваемое при сгорании смеси водорода и кислорода в камеру сгорания 10b, способствует нагреванию жидкого водорода, текущего в теплообменнике 24. На выходе из теплообменника 24 часть нагретого водорода проходит через регулируемый перепускной клапан 28 для того, чтобы достичь камеры сгорания 10b напрямую, не проходя через турбину 22b турбонасоса 22. Остаток нагретого водорода питает упомянутую турбину 22b и расширяется в ней, приводя ее тем самым в действие и таким образом приводя в действие насос 22a турбонасоса 22. Перепускной клапан 28 таким образом служит для регулирования скорости потока и таким образом количества водорода, подаваемого в камеру сгорания 10b, путем регулирования мощности турбины 22b турбонасоса 22. Чем больше количество нагретого водорода получает турбина 22b, тем сильнее работает насос 22a турбонасоса 22, и таким образом большее количество водорода выкачивается из первого бака 12.

В дополнение к этому, для питания камеры сгорания 10b кислородом во второй бак 14 через контур 34 давления подается гелий под давлением. Давление гелия, покидающего контур 34 давления, регулируется редукционным клапаном 36. Это повышает давление кислорода, содержащегося во втором баке 14, до давления более высокого, чем давление, существующее в камере сгорания 10b. После этого, регулируемый входной клапан 30 открывается и регулирует объемную скорость потока и таким образом количество кислорода под давлением, которое подается в камеру сгорания 10b для того, чтобы достичь хорошего соотношения смешивания между водородом и кислородом.

Ракетный двигатель 100 с устройством питания во втором варианте осуществления показан на Фиг. 2. Большинство элементов этого ракетного двигателя 100 идентично или эквивалентно описанным выше для первого варианта осуществления, и следовательно они обозначены теми же самыми ссылочными номерами.

Второй вариант осуществления отличается от первого тем, что первый компонент ракетного топлива входит в насос 22a турбонасоса 22 в направлении тяги P создающей тягу камеры 10, облегчая тем самым механическую интеграцию. При таких обстоятельствах первый контур 16 питания имеет бустерный насос 40, вставленный ниже по потоку от клапана 20 питания и выше по потоку от насоса 22a турбонасоса 22. Этот бустерный насос 40 механически соединен с турбиной 42. Эта турбина 42 вставляется в контур 34 давления ниже по потоку от третьего бака 32 со сжатым гелием и ниже по потоку от редукционного клапана 36, и выше по потоку от второго бака 14. Турбина 42, соединенная с бустерным насосом 40, таким образом, приводится в действие сжатым гелием, приводя в свою очередь в движение упомянутый бустерный насос 40. Бустерный насос 40 служит для того, чтобы избежать кавитационных явлений на входе насоса 22a турбонасоса 22, которые могли бы произойти в частности в конце опустошения первого бака 12, учитывая ориентацию турбонасоса 22 в этом варианте осуществления.

Работа устройства питания в этом втором варианте осуществления почти аналогична работе первого варианта осуществления. Она отличается от первого варианта осуществления тем, что до того, как быть отправленным во второй бак 14 с целью повышения давления во втором баке 14, содержащем жидкий кислород, гелий, содержащийся в третьем баке 32, питает турбину 42, соединенную с бустерным насосом 40, приводя тем самым в действие упомянутый бустерный насос 40. В результате на выходе из клапана 20 питания кислород проходит через бустерный насос 40, и бустерный насос 40 служит для повышения давления насоса турбонасоса.

Хотя настоящее изобретение описывается со ссылкой на конкретные варианты осуществления, должно быть ясно, что модификации и изменения могут быть выполнены в нем без выхода за пределы общей области охвата настоящего изобретения, определяемой формулой изобретения. В частности отдельные характеристики различных показанных и/или упомянутых вариантов осуществления могут быть скомбинированы в дополнительных вариантах осуществления. Следовательно, данное описание и чертежи следует рассматривать в том смысле, что они являются иллюстративными, а не ограничивающими.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПИТАНИЯ РАКЕТНОГО ДВИГАТЕЛЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПИТАНИЯ РАКЕТНОГО ДВИГАТЕЛЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПИТАНИЯ РАКЕТНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 261-270 of 928 items.
20.10.2014
№216.013.005d

Маслоотделитель и сборка, содержащая маслоотделитель

Маслоотделитель содержит втулку, снабженную гильзой, установленной на вентиляционном валу, и несущим диском, продолжающимся за гильзу, а также кожух с накладной пластиной и цилиндрическую втулку, окружающую гильзу. Несущий диск содержит обод, в котором одним концом зацеплена цилиндрическая...
Тип: Изобретение
Номер охранного документа: 0002531485
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.0060

Система управления угловым положением лопаток и способ оптимизации упомянутого углового положения

Система управления угловым положением лопаток статора, содержащая средства вычисления заданного углового положения (VSV) лопаток в зависимости от одной из скоростей (N1, N2) и модуль коррекции заданного положения (VSV), содержащий: средства определения углового положения (VSV) лопаток; средства...
Тип: Изобретение
Номер охранного документа: 0002531488
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01ba

Контур подачи топлива для авиационного двигателя

Изобретение относится к контуру для подачи топлива для авиационного двигателя, содержащему систему нагнетания высокого давления для подачи топлива под высоким давлением к форсункам камеры сгорания, упомянутая система нагнетания высокого давления имеет первый и второй шестеренчатые насосы...
Тип: Изобретение
Номер охранного документа: 0002531840
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02ab

Контур подачи топлива для авиационного двигателя

Изобретение относится к контуру подачи топлива для авиационного двигателя, причем контур содержит насосную систему высокого давления, содержащую первый и второй насосы прямого вытеснения, гидравлический привод и блок дозирования топлива. В зависимости от положения плунжера привода впускное...
Тип: Изобретение
Номер охранного документа: 0002532081
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.0439

Турбореактивный двигатель, содержащий улучшенные средства регулирования расхода потока воздуха охлаждения, отбираемого с выхода компрессора высокого давления

Турбореактивный двигатель содержит впускной канал потока воздуха охлаждения диска турбины высокого давления, открывающийся в полость. Полость является по существу изолированной с входной стороны от полости, в которой циркулирует поток воздуха, отбираемый с выхода компрессора высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002532479
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0569

Способ изготовления системы, содержащей множество лопаток, установленных в платформе

Изобретение относится к области металлургии, а именно, к изготовлению сектора газотурбинного двигателя. Способ изготовления сектора колеса газотурбинного двигателя (11), содержащего лопатки (9), установленные в полках (7, 8) лопаток включает изготовление лопаток (9) отдельно от полок (7, 8)...
Тип: Изобретение
Номер охранного документа: 0002532783
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0575

Способ изготовления теплового барьера

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности. Способ изготовления теплового барьера, содержащего слой керамического покрытия, покрывающего по меньшей мере одну часть поверхности подложки, включает катодное электроосаждение слоя покрытия...
Тип: Изобретение
Номер охранного документа: 0002532795
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.05be

Направляющий аппарат турбины для газотурбинного двигателя, сектор направляющего аппарата, непрерывный кольцевой кронштейн, турбина низкого давления газотурбинного двигателя и газотурбинный двигатель

Направляющий аппарат турбины газотурбинного двигателя разделен на сектора, включающие внутреннюю и наружную платформы, связанные между собой радиальными лопатками. Каждый сектор внутренней платформы связан с сектором радиальной перегородки. Внутренняя периферийная часть каждого сектора...
Тип: Изобретение
Номер охранного документа: 0002532868
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07bf

Лопасть винта летательного аппарата

Изобретение относится к области авиации, в частности к конструкциям и способам изготовления лопастей воздушных винтов. Лопасть (10) винта турбовинтового двигателя летательного аппарата включает конструкцию (20) с аэродинамическим профилем, содержащую, по меньшей мере, одно волокнистое усиление,...
Тип: Изобретение
Номер охранного документа: 0002533384
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.089d

Монолитный удерживающий кронштейн авиационного оборудования

Удерживающий кронштейн авиационного оборудования содержит фланец присоединения к несущей конструкции, траверсу крепления оборудования и промежуточный элемент жесткости, выполненные из одной согнутой пластины листового металла. Элемент жесткости состоит из двух ребер жесткости, каждое из которых...
Тип: Изобретение
Номер охранного документа: 0002533606
Дата охранного документа: 20.11.2014
Showing 261-270 of 667 items.
20.10.2014
№216.012.ff51

Способ изготовления детали из суперсплава на основе никеля и деталь, полученная указанным способом

Изобретение относится к области металлургии, в частности к получению жаропрочных сплавов на основе никеля, обладающих высоким сопротивлением ползучести и растяжению. Способ изготовления заготовки детали из суперсплава на основе Ni, содержащего, по меньшей мере, 50 мас.% Ni и в сумме, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002531217
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.005d

Маслоотделитель и сборка, содержащая маслоотделитель

Маслоотделитель содержит втулку, снабженную гильзой, установленной на вентиляционном валу, и несущим диском, продолжающимся за гильзу, а также кожух с накладной пластиной и цилиндрическую втулку, окружающую гильзу. Несущий диск содержит обод, в котором одним концом зацеплена цилиндрическая...
Тип: Изобретение
Номер охранного документа: 0002531485
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.0060

Система управления угловым положением лопаток и способ оптимизации упомянутого углового положения

Система управления угловым положением лопаток статора, содержащая средства вычисления заданного углового положения (VSV) лопаток в зависимости от одной из скоростей (N1, N2) и модуль коррекции заданного положения (VSV), содержащий: средства определения углового положения (VSV) лопаток; средства...
Тип: Изобретение
Номер охранного документа: 0002531488
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01ba

Контур подачи топлива для авиационного двигателя

Изобретение относится к контуру для подачи топлива для авиационного двигателя, содержащему систему нагнетания высокого давления для подачи топлива под высоким давлением к форсункам камеры сгорания, упомянутая система нагнетания высокого давления имеет первый и второй шестеренчатые насосы...
Тип: Изобретение
Номер охранного документа: 0002531840
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02ab

Контур подачи топлива для авиационного двигателя

Изобретение относится к контуру подачи топлива для авиационного двигателя, причем контур содержит насосную систему высокого давления, содержащую первый и второй насосы прямого вытеснения, гидравлический привод и блок дозирования топлива. В зависимости от положения плунжера привода впускное...
Тип: Изобретение
Номер охранного документа: 0002532081
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.0439

Турбореактивный двигатель, содержащий улучшенные средства регулирования расхода потока воздуха охлаждения, отбираемого с выхода компрессора высокого давления

Турбореактивный двигатель содержит впускной канал потока воздуха охлаждения диска турбины высокого давления, открывающийся в полость. Полость является по существу изолированной с входной стороны от полости, в которой циркулирует поток воздуха, отбираемый с выхода компрессора высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002532479
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0569

Способ изготовления системы, содержащей множество лопаток, установленных в платформе

Изобретение относится к области металлургии, а именно, к изготовлению сектора газотурбинного двигателя. Способ изготовления сектора колеса газотурбинного двигателя (11), содержащего лопатки (9), установленные в полках (7, 8) лопаток включает изготовление лопаток (9) отдельно от полок (7, 8)...
Тип: Изобретение
Номер охранного документа: 0002532783
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0575

Способ изготовления теплового барьера

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности. Способ изготовления теплового барьера, содержащего слой керамического покрытия, покрывающего по меньшей мере одну часть поверхности подложки, включает катодное электроосаждение слоя покрытия...
Тип: Изобретение
Номер охранного документа: 0002532795
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.05be

Направляющий аппарат турбины для газотурбинного двигателя, сектор направляющего аппарата, непрерывный кольцевой кронштейн, турбина низкого давления газотурбинного двигателя и газотурбинный двигатель

Направляющий аппарат турбины газотурбинного двигателя разделен на сектора, включающие внутреннюю и наружную платформы, связанные между собой радиальными лопатками. Каждый сектор внутренней платформы связан с сектором радиальной перегородки. Внутренняя периферийная часть каждого сектора...
Тип: Изобретение
Номер охранного документа: 0002532868
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.07bf

Лопасть винта летательного аппарата

Изобретение относится к области авиации, в частности к конструкциям и способам изготовления лопастей воздушных винтов. Лопасть (10) винта турбовинтового двигателя летательного аппарата включает конструкцию (20) с аэродинамическим профилем, содержащую, по меньшей мере, одно волокнистое усиление,...
Тип: Изобретение
Номер охранного документа: 0002533384
Дата охранного документа: 20.11.2014
+ добавить свой РИД