×
13.02.2018
218.016.2137

Результат интеллектуальной деятельности: СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002641674
Дата охранного документа
19.01.2018
Аннотация: Изобретение относится к области электротехники и может быть использовано в системах привода трехфазного вентильного реактивного электродвигателя. Техническим результатом является расширение диапазона подавления пульсаций крутящего момента вентильного реактивного электродвигателя. Предложен способ трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя. Первый набор пороговых значений (th1, th1, и th1) крутящего момента устанавливается в интервале [0°, θ/3] положений ротора. Второй набор пороговых значений (th2, th2, и th2) крутящего момента устанавливается в интервале [θ/3, θ/2] положений ротора. Питание подается на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В, на θ/3. Весь процесс коммутации от фазы А к фазе В разделен на два интервала. В интервале [0°, θ] положений ротора фаза А использует второй набор пороговых значений (th2,, th2, и th2) крутящего момента, в то время как фаза В использует первый набор пороговых значений (th1, th1, th1) крутящего момента. Критическое положение θ автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общий крутящий момент управляется в интервале [T+th2, T+th2]. В интервале [θ, θ/3] положений ротора фаза А продолжает использовать второй набор пороговых значений (th2, th2, и th2) крутящего момента фаза В продолжает использовать первый набор пороговых значений (th1, th1, и th1) крутящего момента, и общий крутящий момент управляется в интервале [T+th1, T+th1]. Это подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя и обеспечивает высокую ценность для технического применения. 1 з.п. ф-лы, 4 ил.

Область техники

Настоящее изобретение относится к способу трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя и в частности к системе привода трехфазного вентильного реактивного электродвигателя.

Уровень техники

Вентильный реактивный электродвигатель привлекает большое внимание благодаря простоте и прочности своей конструкции, низкой стоимости изготовления и превосходным рабочим характеристикам устройства регулирования скорости. Тем не менее, его особая конструкция с двумя типами выступающих полюсов и коммутационный тип режима возбуждения приводят к тому, что электромагнитный момент на выходе имеет большие пульсации, которые существенно ограничивают использование вентильного реактивного электродвигателя в его областях применения. По этой причине исследователи предложили различные способы для того, чтобы устранить пульсации крутящего момента и при этом обеспечить минимальный расход меди. Эти способы эффективны в определенном диапазоне скоростей. Тем не менее, когда скорость вращения высока, из-за ограниченного напряжения источника постоянного тока, способность системы контролировать и отслеживать ожидаемый ток, ожидаемое потокосцепление и ожидаемый крутящий момент ухудшается, и эффективное устранение пульсаций крутящего момента становится сложным. Более того, из-за ограничения максимального тока обмотки и вольтамперной характеристики (ВАХ) полупроводниковых приборов система вентильного реактивного электродвигателя имеет ограничение сверху по току, и в связи с ограничением по току, плавный крутящий момент вентильного реактивного электродвигателя на выходе может быть обеспечен только в ограниченном диапазоне. Таким образом, все устройства управления плавными крутящими моментами на выходе имеют определенный рабочий диапазон.

Раскрытие сущности изобретения

Техническая проблема: задачей настоящего изобретения является устранение проблемы, известной из уровня техники, и обеспечение способа трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя.

Техническое решение: настоящее изобретение обеспечивает способ трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя, при этом способ включает в себя следующие этапы:

а. Установку первой группы пороговых значений (th1low, th1zero, th1up) крутящего момента в интервале [0°, θr/3] положений ротора и второй группы пороговых значений (th2low, th2zero, th2up) крутящего момента в интервале [θr/3, θr/2] положений ротора, при этом указанные шесть пороговых значений крутящего момента удовлетворяют следующим условиям:

в которых положение 0° ротора является положением с минимальной фазовой индуктивностью, положение θr ротора является угловым шагом, т.е. одним оборотом ротора, а θr/2 является половиной оборота ротора;

б. Установку возбужденного состояния SA в качестве возбужденного состояния питания фазы А, при этом возбужденное состояние SA=1 обозначает, что возбуждающее напряжение фазы А положительное, возбужденное состояние SA=0 обозначает, что возбуждающее напряжение фазы А равно нулю, а возбужденное состояние SA=-1 обозначает, что возбуждающее напряжение фазы А отрицательное; установка возбужденного состояния SB в качестве возбужденного состояния питания фазы В, при этом возбужденное состояние SB=1 обозначает, что возбуждающее напряжение фазы В положительное, возбужденное состояние SB=0 обозначает, что возбуждающее напряжение фазы В равно нулю, а возбужденное состояние SB=-1 обозначает, что возбуждающее напряжение фазы В отрицательное, а Тe - ожидаемый плавный общий крутящий момент.

в. Для смежных сигналов питания возбуждения фазы А и фазы В сигнал питания фазы А опережает на θr/3 сигнал питания фазы В. В этот момент фаза А выключена, фаза В включена, и трехуровневое подавление пульсации крутящего момента трехфазного вентильного реактивного электродвигателя осуществляется путем деления процесса коммутации от фазы А к фазе В на две части.

Процесс коммутации от фазы А к фазе В разделен на две части следующим образом:

(1) В интервале [0°, θ1] положений ротора фаза А использует вторую группу пороговых значений (th2low, th2zero, th2up) крутящего момента, фаза В использует первую группу пороговых значений (th1low, th1zero, th1up) крутящего момента, критическое положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;

(1.1) цикл переключения фазы В начинается в положении ротора 0°, при этом устанавливается исходное значение возбужденного состояния SB=1, и ток и крутящий момент фазы В увеличиваются от 0; возбужденное состояние SA остается в первоначальном состоянии SA=1, а ток и крутящий момент фазы А увеличиваются. Общий крутящий момент увеличивается;

(1.2) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, то возбужденное состояние SA изменяется со значения 1 в значение -1, и крутящий момент фазы А уменьшается; фаза В сохраняет первоначальное состояние, а крутящий момент фазы В продолжает увеличиваться. Поскольку фазовый ток и скорость изменения индуктивности в фазе В в этот момент малы, то скорость увеличения крутящего момента фазы В меньше, чем скорость уменьшения крутящего момента фазы А, характер изменения общего крутящего момента определяется фазой А, и общий крутящий момент уменьшается;

(1.3) когда общий крутящий момент впервые уменьшается до значения Te+th1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют первоначальные состояния, и общий крутящий момент продолжает уменьшаться;

(1.4) когда общий крутящий момент уменьшается до значения Te+th2zero крутящего момента, в фазе А триггеруется (запускается) переход из возбужденного состояния SA=-1 в возбужденное состояние SA=0, и крутящий момент фазы А уменьшается, однако скорость уменьшения меньше, чем скорость уменьшения в возбужденном состоянии SA=-1; фаза В остается в первоначальном возбужденном состоянии, и крутящий момент продолжает увеличиваться. В этот момент при условии, что возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения крутящего момента фазы А больше, чем скорость увеличения крутящего момента фазы В, и общий крутящий момент уменьшается;

(1.5) когда общий крутящий момент уменьшается до значения Te+th2low крутящего момента, выполняются условия для изменения состояния фазы А, состояние в фазе А переходит из возбужденного состояния SA=0 в возбужденное состояние SA=1, и крутящий момент фазы А увеличивается; фаза В остается в первоначальном состоянии и крутящий момент продолжает увеличиваться; общий крутящий момент увеличивается;

(1.6) когда общий крутящий момент увеличивается до значения Te+th2zero крутящего момента и, в свою очередь, до значения Te+th1low, условия изменения состояния фазы А и фазы В не выполняются в обоих случаях, и общий крутящий момент продолжает увеличиваться;

(1.7) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, этапы (1.2)-(1.6) повторяются, и состояние в фазе В не триггеруется, не изменяется и сохраняет возбужденное состояние SB=1; возбужденное состояние в фазе А переключается между значениями 1, 0 и -1, и общий крутящий момент управляется в диапазоне [Te+th2low, Те+th2up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положения ротора;

(1.8) с увеличением положения ротора, скорость изменения индуктивности и ток в фазе В увеличиваются до определенного уровня. После того, как достигнуто определенное критическое положение, при возбужденном состоянии SA=0 и возбужденном состоянии SB=1 скорость уменьшения крутящего момента в фазе А меньше, чем скорость увеличения крутящего момента в фазе В, и общий крутящий момент увеличивается;

(2) в интервале [θ1, θr/3] положений ротора, фаза А продолжает использовать вторую группу пороговых значений (th2low, th2zero, th2up) крутящего момента, а фаза В продолжает использовать первую группу пороговых значений (th2low, th2zero, th2up) крутящего момента;

(2.1) в положении θ1 ротора, общий крутящий момент достигает значения Te+th2up крутящего момента и состояние фазы А переключается в возбужденное состояние SA=-1; фаза В остается в возбужденном состоянии SB=1, и в этом положении скорость уменьшения крутящего момента в фазе А при возбуждении отрицательного напряжения питания больше, чем скорость увеличения крутящего момента в фазе В при возбуждении положительного напряжения питания, так что общий крутящий момент уменьшается. Однако, эта ситуация изменяется впоследствии. Вслед за увеличением положения ротора, несмотря на то, что возбужденные состояния фазы А и фазы В остаются неизменными, скорость уменьшения крутящего момента в фазе А в возбужденном состоянии SA=-1 меньше, чем скорость увеличения крутящего момента в фазе В в возбужденном состоянии SB=1, тем самым общий крутящий момент увеличивается;

(2.2) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает увеличиваться;

(2.3) когда общий крутящий момент достигает значения Te+th1zero крутящего момента, выполняются условия изменения состояния в фазе В, возбужденное состояние SB переходит в 0, и крутящий момент фазы В уменьшается; фаза А остается в исходном возбужденном состоянии SA=-1, и общий крутящий момент уменьшается;

(2.4) когда общий крутящий момент уменьшается до значения Te+th2up крутящего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает уменьшаться;

(2.5) когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, выполняются условия изменения состояния в фазе В, возбужденное состояние SB переходит в 1 и крутящий момент фазы В увеличивается; фаза А остается в исходном возбужденном состоянии SA=-1 и общий крутящий момент увеличивается;

(2.6) этапы (2.2)-(2.5) повторяются, возбужденное состояние SA остается равным -1 и крутящий момент и ток фазы А продолжают уменьшаться; возбужденное состояние SB переключается между 0 и 1, и общий крутящий момент управляется в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора;

(2.7) когда ротор находится в критическом положении, крутящий момент фазы В увеличивается в возбужденном состоянии SB=0, причем скорость увеличения больше, чем скорость уменьшения крутящего момента в фазе А в возбужденном состоянии SA=-1. В этот момент общий крутящий момент увеличивается;

(2.8) когда общий крутящий момент достигает значения Te+th1up крутящего момента, состояние фазы В триггеруется и изменяется, возбужденное состояние SB переходит из 0 в -1 и крутящий момент фазы В уменьшается; крутящий момент фазы А продолжает уменьшаться и общий крутящий момент уменьшается;

(2.9) когда общий крутящий момент уменьшается до значения Te+th1zero крутящего момента и, в свою очередь, до значения Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает уменьшаться;

(2.10) когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, возбужденное состояние SB триггеруется и изменяется на 1 и крутящий момент фазы В увеличивается; фаза А остается в исходном состоянии, крутящий момент фазы А продолжает уменьшаться, и общий крутящий момент увеличивается;

(2.11) когда общий крутящий момент увеличивается до значения Te+th1zero крутящего момента, возбужденное состояние SB триггеруется и изменяется на 0, а возбужденное состояние SA остается равным -1. Ситуация в этот момент такая же, как на этапе (2.7). Этапы (2.7)~(2.11) повторяются, возбужденное состояние SA остается равным -1, возбужденное состояние SB переключается между значениями -1, 0 и 1, и общий крутящий момент управляется в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора;

(2.12) когда ротор находится в критическом положении, и крутящий момент фазы В находится в возбужденном состоянии SB=0, а возбужденное состояние SA=-1, общий крутящий момент более не увеличивается, а, наоборот, уменьшается. Этапы (2.2)-(2.5) повторяются с этого момента, и общий крутящий момент управляется в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора.

Положительный эффект

Благодаря применению упомянутого выше технического решения, путем установки двух групп пороговых значений крутящего момента и смежных возбужденных состояний фазы А и фазы В настоящее изобретение обеспечивает переключение между тремя возбужденным состояниями в фазе А и фазе В, в которых возбуждающее напряжение питания является положительным, нулевым и отрицательным соответственно, управляет общим крутящим моментом в интервале между двумя группами пороговых значений крутящего момента, подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя и осуществляет плавное управление прямым и переходным крутящим моментом трехфазного вентильного реактивного электродвигателя. Характеристики формы сигнала возбуждающего напряжения, подаваемого на обмотки электродвигателя, и формы сигнала ожидаемого напряжения совпадают. Действующее значение тока фазы полностью идентично ожидаемому значению тока фазы, так что вентильный реактивный электродвигатель выдает плавный крутящий момент в максимальном диапазоне. Настоящее изобретение имеет высокую универсальность, желаемый практический эффект и широкие перспективы применения, а также применимо к различным типам систем привода трехфазных вентильных реактивных электродвигателей различных конструкций.

Краткое описание чертежей

На ФИГ. 1 представлена схематичная диаграмма установки трехуровневых пороговых значений крутящего момента вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением.

На ФИГ. 2(a) представлена схематичная диаграмма переключения возбужденного состояния фазы В питания вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением.

На ФИГ. 2(б) представлена схематичная диаграмма переключения возбужденного состояния фазы А питания вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением.

На ФИГ. 3 представлена форма колебаний крутящего момента вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением.

Осуществление изобретения

Настоящее изобретение описано ниже посредством представленных примеров со ссылками на сопутствующие графические материалы:

Согласно ФИГ. 1 для одного трехфазного вентильного реактивного электродвигателя осуществляют следующие подробные этапы:

А) Установка первой группы пороговых значений (th1low, th1zero, th1up) крутящего момента в интервале [0°, θr/3] положений ротора и второй группы пороговых значений (th2low, th2zero, th2up) крутящего момента в интервале [θr/3, θr/2] положений ротора, при этом указанные шесть пороговых значений крутящего момента удовлетворяют следующим условиям:

в которых положение 0° ротора является положением с минимальной фазовой индуктивностью, положение θr ротора является угловым шагом, т.е. одним оборотом ротора, а θr/2 является половиной оборота ротора;

б) На Фиг. 2 (а, б) показана установка возбужденного состояния SA в качестве возбужденного состояния питания фазы А, при этом возбужденное состояние SA=1 обозначает, что возбуждающее напряжение фазы А положительное, возбужденное состояние SA=0 обозначает, что возбуждающее напряжение фазы А равно нулю, а возбужденное состояние SA=-1 обозначает, что возбуждающее напряжение фазы А отрицательное; установка возбужденного состояния SB в качестве возбужденного состояния питания фазы В, при этом возбужденное состояние SB=1 обозначает, что возбуждающее напряжение фазы В положительное, возбужденное состояние SB=0 обозначает, что возбуждающее напряжение фазы В равно нулю, а возбужденное состояние SB=-1 обозначает, что возбуждающее напряжение фазы В отрицательное, а Те - ожидаемый плавный крутящий момент.

В) Для смежных сигналов питания возбуждения фазы А и фазы В сигнал питания фазы А опережает на θr/3 сигнал питания фазы В. В этот момент фаза А выключена, фаза В включена, и трехуровневое подавление пульсации крутящего момента трехфазного вентильного реактивного электродвигателя осуществляется путем деления процесса коммутации от фазы А к фазе В на две части, как показано на Фиг. 1.

Процесс коммутации от фазы А к фазе В разделен на две части следующим образом:

(1) В интервале положений [0°, θ1] ротора фаза А использует вторую группу пороговых значений (th2low, th2zero, th2up) крутящего момента, фаза В использует первую группу пороговых значений (th1low, th1zero, th1up) крутящего момента, при этом критическое положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;

(1.1) цикл переключения фазы В начинается в положении 0° ротора, при этом устанавливается исходное значение возбужденного состояния SB=1, и ток и крутящий момент фазы В увеличиваются от 0; возбужденное состояние SA остается в первоначальном состоянии SA=1, а ток и крутящий момент фазы А увеличиваются, общий крутящий момент увеличивается;

(1.2) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, то возбужденное состояние SA переводится из значения 1 в значение -1, и крутящий момент фазы А уменьшается; фаза В остается в первоначальном состоянии, а крутящий момент фазы В продолжает увеличиваться; поскольку фазовый ток и скорость изменения индуктивности в фазе В в этот момент малы, то скорость увеличения крутящего момента фазы В меньше, чем скорость уменьшения крутящего момента фазы А, характер изменения общего крутящего момента определяется фазой А, и общий крутящий момент уменьшается;

(1.3) когда общий крутящий момент впервые уменьшается до значения Te+th1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют первоначальные состояния, и общий крутящий момент продолжает уменьшаться;

(1.4) когда общий крутящий момент уменьшается до значения Te+th2zero крутящего момента, триггеруется переход состояния фазы А из возбужденного состояния SA=-1 в возбужденное состояние SA=0, и крутящий момент фазы А уменьшается, однако скорость уменьшения меньше, чем скорость уменьшения в возбужденном состоянии SA=-1; фаза В остается в первоначальном возбужденном состоянии и крутящий момент продолжает увеличиваться. В этот момент, при условии, что возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения крутящего момента фазы А больше чем скорость увеличения крутящего момента фазы В, и общий крутящий момент уменьшается;

(1.5) когда общий крутящий момент уменьшается до значения Te+th2low крутящего момента, выполняются условия для изменения состояния в фазе А, состояние в фазе А переходит из возбужденного состояния SA=0 в возбужденное состояние SA=1, и крутящий момент фазы А увеличивается; фаза В остается в первоначальном состоянии, и крутящий момент продолжает увеличиваться; общий крутящий момент увеличивается;

(1.6) когда общий крутящий момент увеличивается до значения Te+th2zero крутящего момента и, в свою очередь, до Te+th1low, условия изменения состояния в фазе А и фазе В не выполняются в обоих случаях, и общий крутящий момент продолжает увеличиваться;

(1.7) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, этапы (1.2)~(1.6) повторяются, и состояние в фазе В не триггеруется, не изменяется и остается возбужденным состоянием SB=1; возбужденное состояние в фазе А переключается между значениями 1, 0 и -1, и общий крутящий момент управляется в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положения ротора;

(1.8) с увеличением положения ротора, скорость изменения индуктивности и ток в фазе В увеличиваются до определенного уровня. После того, как достигнуто определенное критическое положение, когда возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения крутящего момента в фазе А меньше, чем скорость увеличения крутящего момента в фазе В и общий крутящий момент увеличивается.

(2) В интервале [θ1, θr/3] положений ротора фаза А продолжает использовать вторую группу пороговых значений (th2low, th2zero, th2up) крутящего момента, а фаза В продолжает использовать первую группу пороговых значений (th1low, th1zero, th1up) крутящего момента;

(2.1) В положении θ1 ротора общий крутящий момент достигает значения Te+th2up крутящего момента и состояние в фазе А переключается в возбужденное состояние SA=-1; фаза В остается в возбужденном состоянии SB=1, и в этом положении скорость уменьшения крутящего момента в фазе А при возбуждении отрицательного напряжения питания больше, чем скорость увеличения крутящего момента в фазе В при возбуждении положительного напряжения питания, так что общий крутящий момент уменьшается. Однако, эта ситуация изменяется в дальнейшем. Следуя за увеличением положения ротора, несмотря на то, что возбужденные состояния фазы А и фазы В остаются неизменными, скорость уменьшения крутящего момента в фазе А в возбужденном состоянии SA=-1 меньше, чем скорость увеличения крутящего момента в фазе В в возбужденном состоянии SB=1, тем самым общий крутящий момент увеличивается;

(2.2) когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает увеличиваться;

(2.3) когда общий крутящий момент достигает значения Te+th1zero крутящего момента, выполняются условия изменения состояния в фазе В и возбужденное состояние SB переходит в 0 и крутящий момент фазы В уменьшается; фаза А остается в исходном возбужденном состоянии SA=-1 и общий крутящий момент уменьшается;

(2.4) когда общий крутящий момент уменьшается до значения Te+th2up крутящего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает уменьшаться;

(2.5) когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, выполняются условия изменения состояния в фазе В и возбужденное состояние SB переходит в 1 и крутящий момент фазы В увеличивается; фаза А остается в исходном возбужденном состоянии SA=-1 и общий крутящий момент увеличивается.

(2.6) Этапы (2.2)~(2.5) повторяются, возбужденное состояние SA остается равным -1 и крутящий момент и ток фазы А продолжают уменьшаться; возбужденное состояние SB переключается между 0 и 1, и общий крутящий момент управляется в интервале [Te+th1low,, Te+th1zero], тем самым подавляя пульсации трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора;

(2.7) когда ротор находится в критическом положении, крутящий момент фазы В увеличивается в возбужденном состоянии SB=0, и скорость увеличения больше, чем скорость уменьшения крутящего момента в фазе А в возбужденном состоянии SA=-1. В этот момент общий крутящий момент увеличивается;

(2.8) кгда общий крутящий момент достигает значения Te+th1up крутящего момента, состояние фазы В триггеруется и изменяется, возбужденное состояние SB переходит из 0 в -1, и крутящий момент фазы В уменьшается; крутящий момент фазы А продолжает уменьшаться, и общий крутящий момент уменьшается;

(2.9) когда общий крутящий момент уменьшается до значения Te+th1zero крутящего момента и, в свою очередь, до значения Te+th2up ни возбужденное состояние SA, ни возбужденное состояние SB не триггеруются и не изменяются, и общий крутящий момент продолжает уменьшаться;

(2.10) когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, возбужденное состояние SB триггеруется и изменяется на 1 и крутящий момент фазы В увеличивается; фаза А остается в исходном состоянии, крутящий момент фазы А продолжает уменьшаться и общий крутящий момент увеличивается;

(2.11) когда общий крутящий момент увеличивается до значения Te+th1zero крутящего момента, возбужденное состояние SB триггеруется и изменяется на 0, а возбужденное состояние SA остается равным -1. Ситуация в этот момент такая же, как на этапе (2.7). Этапы (2.7)~(2.11) повторяются, возбужденное состояние SA остается равным -1, возбужденное состояние SB переключается между значениями -1, 0 и 1, и общий крутящий момент управляется в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора;

(2.12) когда ротор находится в критическом положении и крутящий момент фазы В в возбужденном состоянии SB=0, а возбужденное состояние SA=-1, общий крутящий момент более не увеличивается, а, наоборот, уменьшается. (2.2)~(2.5) повторяются с этого момента и общий крутящий момент управляется в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора.

Для смежных сигналов питания возбуждения фазы В и фазы С, когда сигнал питания фазы В опережает на θr/3 сигнал питания фазы С, установка пороговых значений крутящего момента, процесс коммутации, и способы переключения и перехода возбужденных состояний фазы В и фазы С аналогичны предыдущему случаю.

Для смежных сигналов питания возбуждения фазы С и фазы А, когда сигнал питания фазы С опережает на θr/3 сигнал питания фазы А, установка пороговых значений крутящего момента, процесс коммутации и способы переключения и перехода возбужденных состояний фазы С и фазы А аналогичны предыдущему случаю.

Экспериментально измеренный сигнал крутящего момента вентильного реактивного электродвигателя представлен на ФИГ. 3.


СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ТРЕХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 11-20 of 112 items.
20.08.2016
№216.015.4ebe

Способ и механическое устройство предотвращения отклонения направляющего каната

Механическое устройство и способ предотвращения отклонения направляющего каната применяются при строительстве в сверхглубоких вертикальных шахтах. Механическое устройство предотвращения отклонения направляющего каната содержит Т-образную монтажную опору, поворотную раму, гидравлическое опорное...
Тип: Изобретение
Номер охранного документа: 0002595227
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f02

Стыковочная платформа шахтного подъемника, подходящая для гибкой направляющей, и способ стыкования для шахтного подъемника

Стыковочная платформа в целом содержит узел (1) опорного захвата и силовой узел (2), причем узел (1) опорного захвата содержит установочную пластину, корпус подшипника резьбового стержня, резьбовой стержень (1-4), гайку (1-2), опорный стержень (1-5), толкающий стержень (1-3), опорный захват...
Тип: Изобретение
Номер охранного документа: 0002595232
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50bc

Способ и устройство для контролирования состояний выравнивания натяжения и регулировки смещения стальных проволочных канатов многоканатного подъёмника

Изобретение раскрывает способ и устройство для контролирования состояний выравнивания натяжения и регулировки смещения стальных проволочных канатов многоканатного подъемника. Устройство содержит датчик смещения, установленный на устройстве для выравнивания натяжения стальных проволочных...
Тип: Изобретение
Номер охранного документа: 0002595723
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.5841

Сброс давления пневматического взрыва высокого давления и способ усиления передачи

Изобретение относится к горному делу и может быть применено для дегазации угольных пластов. Способ включает сооружение взрывной скважины в угольном слое и выполнение операции резки слоя угля струей воды под давлением во взрывной скважине с интервалом, так, что ведущая канавка слоя образуется в...
Тип: Изобретение
Номер охранного документа: 0002588095
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5928

Тормозная буферная система предотвращения падения для высокоскоростного шахтного лифта

Настоящее изобретение относится к тормозной буферной системе предотвращения падения для высокоскоростного шахтного лифта. Система содержит тормозной трос (2), зафиксированный с двух сторон кабины (5). Один конец тормозного троса (2) зафиксирован наверху шахтного ствола (6), а другой конец...
Тип: Изобретение
Номер охранного документа: 0002588358
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.61ab

Затвердевающий пеноматериал, содержащий угольную золу, для предотвращения самовозгорания угля и способ его получения

Группа изобретений относится к затвердевающему пеноматериалу, содержащему угольную золу, для предотвращений самовозгорания угля и способу его получения. Затвердевающий пеноматериал, содержащий угольную золу, для предотвращения самовозгорания угля содержит, мас.ч.: воду 40-60, угольную золу 100,...
Тип: Изобретение
Номер охранного документа: 0002588588
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a73

Неорганический отвержденный пеноматериал для остановки течей на поверхности в районе добычи угля в пласте неглубокого залегания и способ его получения

Группа изобретений относится к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала. Неорганический отвержденный пеноматериал для остановки протечек с...
Тип: Изобретение
Номер охранного документа: 0002592912
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8cb6

Устройство для регулирования положения промежуточной корпусной детали крупной двухуровневой клети и способ регулирования и перемещения этой детали

Изобретение относится к устройству для регулирования положения промежуточной корпусной детали двухуровневой клети и способу регулирования этой детали. Устройство для регулирования положения промежуточной корпусной детали (2) крупной двухуровневой клети содержит направляющую балку для...
Тип: Изобретение
Номер охранного документа: 0002604905
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a2f1

Крупнотоннажный устанавливаемый на криволинейной направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию

Настоящее изобретение раскрывает крупнотоннажный устанавливаемый на направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию, содержащий верхний корпус (1) кузова и нижний корпус (2) кузова. Кузов содержит внутреннюю и наружную футеровочные плиты, скрепленные друг с...
Тип: Изобретение
Номер охранного документа: 0002607137
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa82

Способ и устройство для установки задания

Изобретение относится к области автоматического управления бытовыми приборами. При установке задания получают запись о предыдущих операциях пользователя при эксплуатации бытового прибора. Определяют, существует ли регулярное задание, соответствующее записи о предыдущих операциях, при этом...
Тип: Изобретение
Номер охранного документа: 0002611689
Дата охранного документа: 28.02.2017
Showing 11-20 of 66 items.
20.08.2016
№216.015.4ebe

Способ и механическое устройство предотвращения отклонения направляющего каната

Механическое устройство и способ предотвращения отклонения направляющего каната применяются при строительстве в сверхглубоких вертикальных шахтах. Механическое устройство предотвращения отклонения направляющего каната содержит Т-образную монтажную опору, поворотную раму, гидравлическое опорное...
Тип: Изобретение
Номер охранного документа: 0002595227
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f02

Стыковочная платформа шахтного подъемника, подходящая для гибкой направляющей, и способ стыкования для шахтного подъемника

Стыковочная платформа в целом содержит узел (1) опорного захвата и силовой узел (2), причем узел (1) опорного захвата содержит установочную пластину, корпус подшипника резьбового стержня, резьбовой стержень (1-4), гайку (1-2), опорный стержень (1-5), толкающий стержень (1-3), опорный захват...
Тип: Изобретение
Номер охранного документа: 0002595232
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50bc

Способ и устройство для контролирования состояний выравнивания натяжения и регулировки смещения стальных проволочных канатов многоканатного подъёмника

Изобретение раскрывает способ и устройство для контролирования состояний выравнивания натяжения и регулировки смещения стальных проволочных канатов многоканатного подъемника. Устройство содержит датчик смещения, установленный на устройстве для выравнивания натяжения стальных проволочных...
Тип: Изобретение
Номер охранного документа: 0002595723
Дата охранного документа: 27.08.2016
12.01.2017
№217.015.5841

Сброс давления пневматического взрыва высокого давления и способ усиления передачи

Изобретение относится к горному делу и может быть применено для дегазации угольных пластов. Способ включает сооружение взрывной скважины в угольном слое и выполнение операции резки слоя угля струей воды под давлением во взрывной скважине с интервалом, так, что ведущая канавка слоя образуется в...
Тип: Изобретение
Номер охранного документа: 0002588095
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5928

Тормозная буферная система предотвращения падения для высокоскоростного шахтного лифта

Настоящее изобретение относится к тормозной буферной системе предотвращения падения для высокоскоростного шахтного лифта. Система содержит тормозной трос (2), зафиксированный с двух сторон кабины (5). Один конец тормозного троса (2) зафиксирован наверху шахтного ствола (6), а другой конец...
Тип: Изобретение
Номер охранного документа: 0002588358
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.61ab

Затвердевающий пеноматериал, содержащий угольную золу, для предотвращения самовозгорания угля и способ его получения

Группа изобретений относится к затвердевающему пеноматериалу, содержащему угольную золу, для предотвращений самовозгорания угля и способу его получения. Затвердевающий пеноматериал, содержащий угольную золу, для предотвращения самовозгорания угля содержит, мас.ч.: воду 40-60, угольную золу 100,...
Тип: Изобретение
Номер охранного документа: 0002588588
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a73

Неорганический отвержденный пеноматериал для остановки течей на поверхности в районе добычи угля в пласте неглубокого залегания и способ его получения

Группа изобретений относится к неорганическому отвержденному пеноматериалу для остановки протечек с поверхности в районе добычи угля из пласта неглубокого залегания и способу получения неорганического отвержденного пеноматериала. Неорганический отвержденный пеноматериал для остановки протечек с...
Тип: Изобретение
Номер охранного документа: 0002592912
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8cb6

Устройство для регулирования положения промежуточной корпусной детали крупной двухуровневой клети и способ регулирования и перемещения этой детали

Изобретение относится к устройству для регулирования положения промежуточной корпусной детали двухуровневой клети и способу регулирования этой детали. Устройство для регулирования положения промежуточной корпусной детали (2) крупной двухуровневой клети содержит направляющую балку для...
Тип: Изобретение
Номер охранного документа: 0002604905
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a2f1

Крупнотоннажный устанавливаемый на криволинейной направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию

Настоящее изобретение раскрывает крупнотоннажный устанавливаемый на направляющей разгрузочный скип, имеющий внешний привод и удлиненную конструкцию, содержащий верхний корпус (1) кузова и нижний корпус (2) кузова. Кузов содержит внутреннюю и наружную футеровочные плиты, скрепленные друг с...
Тип: Изобретение
Номер охранного документа: 0002607137
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.aa82

Способ и устройство для установки задания

Изобретение относится к области автоматического управления бытовыми приборами. При установке задания получают запись о предыдущих операциях пользователя при эксплуатации бытового прибора. Определяют, существует ли регулярное задание, соответствующее записи о предыдущих операциях, при этом...
Тип: Изобретение
Номер охранного документа: 0002611689
Дата охранного документа: 28.02.2017
+ добавить свой РИД