×
13.02.2018
218.016.2108

Результат интеллектуальной деятельности: ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА

Вид РИД

Изобретение

№ охранного документа
0002640787
Дата охранного документа
17.01.2018
Аннотация: Группа изобретений относится к медицинской визуализации, а именно к позитронно-эмиссионной томографии (ПЭТ). Система ПЭТ содержит память, сконфигурированную с возможностью непрерывной записи обнаруживаемых совпадающих пар событий, обнаруживаемых ПЭТ-детекторами, опору субъекта для поддержки субъекта и перемещения в режиме непрерывного движения через поле видения ПЭТ-детекторов, группирующий блок для группировки записанных совпадающих пар в каждый из множества пространственно ограниченных виртуальных кадров на основании времяпролетной информации, при этом обнаруженные события некоторых из обнаруженных совпадающих пар событий расположены в двух разных виртуальных кадрах, и группирующий блок распределяет совпадающую пару событий одному из двух виртуальных кадров, и блок реконструкции сгруппированных совпадающих пар каждого виртуального кадра в изображение кадра и объединения изображений кадров в общее удлиненное изображение. Способ ПЭТ содержит этапы, на которых перемещают субъект на опоре субъекта непрерывно через поле видения ПЭТ-детекторов, группируют записанные совпадающие пары событий в каждый из множества пространственно ограниченных виртуальных кадров на основании времяпролетной информации, при этом этап группирования включает в себя этап, на котором распределяют совпадающие пары одному из двух виртуальных кадров там, где обнаруженная совпадающая пара событий находится в двух разных виртуальных кадрах, реконструируют сгруппированные совпадающие события каждого виртуального кадра в общее удлиненное изображение. Система времяпролетной ПЭТ содержит решетку ПЭТ-детекторов, которая обнаруживает и записывает совпадающие события в режиме списка, опору субъекта, один или более процессоров, сконфигурированных с возможностью группировки записанных совпадающих пар событий в один из множества пространственно ограниченных виртуальных кадров, когда совпадающие события одной из совпадающих пар событий сгруппированы в смежные виртуальные кадры, распределения указанных обоих совпадающих событий общему виртуальному кадру на основании времяпролетной информации, реконструкции изображения кадра из каждого виртуального кадра и объединения изображений кадра в непрерывное удлиненное изображение. Использование изобретений позволяет получить распределенную реконструкцию данных в режиме списка при непрерывном движении стола. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится, в общем, к медицинской визуализации. Настоящее изобретение находит применение, в частности, в связи с позитронно-эмиссионной томографией (ПЭТ), реконструкцией изображений и непрерывным движением стола (CBM) и описано в дальнейшем с отдельной ссылкой на них. Однако будет понятно, что изобретение находит также применение в других сценариях применения и не обязательно ограничено вышеупомянутым применением.

При ПЭТ визуализации решетки детекторов обнаруживают пары гамма-фотонов, испускаемых в результате события позитронной аннигиляции в субъекте. Пары обнаруженных гамма-фотонов определяют линию срабатывания (LOR). Времяпролетная (TOF) ПЭТ добавляет оценку местоположение источника, где произошло событие позитронной аннигиляции, на основании средней разности по времени между обнаружением каждой пары фотонов. Оценка является расстоянием вдоль линии LOR. Обнаруженные совпадающие пары и TOF информация могут быть записаны в список событий, называемый данными в режиме списка. По данным, собранным в режиме списка, реконструируют одно или более изображений.

Последовательность клинических действий включает в себя время сканирования пациента и время реконструкции одного или более изображений. Клиническое время стоит дорого. Последовательность клинических действий может включать в себя визуализацию с помощью одного или более средств визуализации, например, рентгеновской компьютерной томографии (КТ). Один подход к совершенствованию последовательности клинических действий состоит в быстром формировании изображений, при сокращении общего времени сканирования. При визуализации области пациента, которая длиннее, чем область визуализации сканера, для формирования удлиненного изображения применяли метод пошагового сканирования. Опора пациента перемещается в первую позицию, останавливается, и первую область пациента визуализируют. После визуализации первой области опору перемещают во вторую позицию, останавливают и вторую область визуализируют и так далее. При равномерной дискретизации, области пациента перекрываются, например, на 50%. Однако время перемещения или шага в следующую позицию продлевает общее время сканирования. Движение во время торможения/разгона неудобно для некоторых субъектов. В мультимодальных или гибридных системах, например ПЭТ-КТ, некоторые средства, например КТ, не извлекают пользу из метода пошагового сканирования, который может фактически задерживать последовательность действий другого средства.

Другим подходом является непрерывное движение стола (CBM). Движение CBM сокращает общее время сканирования, поскольку стол находится в постоянном движении, и данные собираются непрерывно. Время разгона и торможения стола в способе пошагового сканирования исключается. Однако собирается один большой набор данных, и реконструкция изображения откладывается до тех пор, пока не собираются все данные. Например, при реконструкции на основе синограмм удлиненного набора данных, каждая синограмма включает в себя вклады данных с полной длины набора данных. Следовательно, данные нельзя группировать в синограммы, пока не собраны все данные. Таким образом, хотя общее время сбора данных для ПЭТ можно сократить, реконструкция изображения откладывается до окончания, которое использует значительные вычислительные ресурсы. Обычно пациента не освобождают из сканера, пока реконструированное изображение не получено и подтверждено, что создает узкое место в последовательности действий. Кроме того, объединение реконструированных изображений с изображениями из других средств задерживается, что дополняет узкое место вычислительных ресурсов. Сочетание с другими средствами использует такие компоненты визуализации, как карты ослабления.

Ниже раскрываются новые и усовершенствованные виртуальные кадры для распределенной реконструкции данных в режиме списка с непрерывным движением стола, которые решают вышеупомянутые и другие проблемы.

В соответствии с одним аспектом, система позитронно-эмиссионной томографии (ПЭТ) включает в себя память, опору субъекта, группирующий блок и блок реконструкции. Память непрерывно записывает обнаруживаемые совпадающие пары событий, обнаруживаемые ПЭТ-детекторами. Опора субъекта поддерживает субъекта и перемещается в режиме непрерывного движения через поле видения ПЭТ-детекторов. Группирующий блок группирует записанные совпадающие пары в каждый из множества пространственно ограниченных виртуальных кадров. Блок реконструкции реконструирует сгруппированные совпадающие пары каждого виртуального кадра в изображение кадра и объединяет изображения кадров в общее удлиненное изображение.

В соответствии с другим аспектом, способ позитронно-эмиссионной томографии (ПЭТ) включает в себя непрерывное перемещение субъекта на опоре субъекта через поле видения ПЭТ-детекторов, с записью при этом обнаруженных совпадающих пар событий в памяти. Записанные совпадающие пары событий группируются в каждый из множества пространственно ограниченных виртуальных кадров. Сгруппированные совпадающие события каждого виртуального кадра реконструируются в общее удлиненное изображение.

В соответствии с другим аспектом, система времяпролетной (TOF) позитронно-эмиссионной томографии (ПЭТ) включает в себя решетку ПЭТ-детекторов, опору субъекта и один или более процессоров. Решетка ПЭТ-детекторов обнаруживает и записывает совпадающие события в данные в режиме списка. Опора субъекта поддерживает субъекта и перемещается в режиме непрерывного движения через поле видения решетки ПЭТ-детекторов. Один или более процессоров сконфигурированы с возможностью группировки записанных совпадающих пар в смежные виртуальные кадры на основании времяпролетной информации. Один или более процессоров дополнительно сконфигурированы с возможностью реконструкции изображения кадра из каждого виртуального кадра и объединения изображений кадров в непрерывное удлиненное поле видения.

Одно преимущество заключается в повышении комфорта пациента.

Другое преимущество состоит в интегрированной мультимодальной последовательности действий.

Другое преимущество состоит в эффективной параллельной реконструкции с помощью распределенной обработки.

Другое преимущество включает в себя уменьшение задержки сканирования.

Другое преимущество заключается в равномерном аксиальном профиле чувствительности.

Другое преимущество состоит в улучшенных осевой дискретизации и пространственном разрешении.

Другое преимущество включает в себя сбор данных с адаптацией к области интереса.

Другие дополнительные преимущества будут понятны специалистам со средним уровнем компетентности в данной области техники после прочтения и изучения нижеследующего подробного описания.

Изобретение может быть в форме различных компонентов и расположений компонентов и в форме различных этапов и расположения этапов. Чертежи предназначены только в целях иллюстрации предпочтительных вариантов осуществления и не подлежат трактовке как ограничивающие изобретение.

Фигура 1 – схематическое изображение варианта осуществления системы ПЭТ с CBM и виртуальными кадрами.

Фигура 2 – схематическое изображение примерного сбора данных с CBM и виртуальными кадрами.

Фигура 3 – схематическое изображение примерного движения CBM с использованием времяпролетной (TOF) группировки событий по виртуальным кадрам.

Фигура 4 – блок-схема последовательности операций для одного способа применения варианта осуществления движения CBM с виртуальными кадрами.

На фигуре 1 схематически изображен вариант осуществления TOF-ПЭТ системы (1) с CBM и виртуальными кадрами. Система 1 включает в себя TOF-ПЭТ сканер 2, показанный в разрезе. Предусмотрена также ПЭТ без времяпролетных измерений (без TOF). Сканер сконфигурирован с опорой 3 субъекта или столом, который перемещается в режиме непрерывного движения через решетку 4 ПЭТ-детекторов. Детекторы расположены вокруг отверстия или туннеля 6, через который опора субъекта движется в аксиальном направлении 8. Расположение детекторов 4 вокруг отверстия ограничивает поле 10 видения. Опора 3 субъекта поддерживает субъекта 12, которому введена инъекция радиофармацевтического препарата. По мере того как опора 3 субъекта перемещается через поле 10 видения, радиофармацевтический препарат распадается в то время, как он поглощается тканью и затем вымывается. По мере того как радиофармацевтический препарат распадается, испускаются позитроны, которые вызывают события аннигиляции, которые испускают гамма-фотоны в виде совпадающих пар. Совпадающие пары гамма-фотонов из поля 10 видения обнаруживаются детекторами 4. Движение CBM или перемещение опоры субъекта записывается в виде начальной позиции, постоянной скорости и затраченного времени, и/или позиционными датчиками, которые записывают точную позицию в момент времени, синхронизированный с детекторами. Данные для каждого события детектора включают в себя момент времени, когда обнаружено каждое событие пары, местоположение детектора, в котором обнаружено каждое событие, и местоположение опоры в момент времени обнаружения.

Объем или субъект 12, подлежащий визуализации подразделяется на смежные пространственные виртуальные кадры 14, заданные расстоянием вдоль аксиального направления перемещения опоры субъекта. Виртуальные кадры 14 могут быть любой длины и конфигурируются блоком 16 кадрирования. Длина каждого виртуального кадра 14, сконфигурированного блоком 16 кадрирования, может зависеть от множества различных факторов, например протокола сканирования, длины поля видения, конфигурации распределенных вычислений, скорости опоры субъекта, предполагаемого качества изображения, анатомических признаков субъекта из другого средства визуализации и т.п. Например, размеры могут быть установлены для одного кадра соответственно головному мозгу и для другого кадра соответственно сердцу, для еще одного соответственно брюшной полости и т.п. Кадры могут длиннее, короче или такого же размера, как поле 10 видения. В другом примере с многочисленными распределенными процессорами можно использовать много виртуальных кадров, чтобы распределить нагрузку по реконструкции. При большом значении скорости опоры субъекта, показаны более длинные виртуальные кадры.

Обнаруженные события совпадающих пар записываются в данные в режиме списка. Детекторы 4 соединены с памятью 18 данных в режиме списка, которая записывает события совпадающих пар по порядку. Данные в режиме списка включают в себя момент времени и местоположение каждого обнаруженного гамма-фотона, из которых выводится времяпролетная информация. Данные событий непрерывно собираются в режиме списка по мере того, как опора 3 субъекта непрерывно перемещается через поле 10 видения. Каждый виртуальный кадр 14 движется в поле видения, через поле видения и выходит из поля видения. Память данных в режиме списка может быть либо кратковременной, либо постоянной. Постоянная память включает в себя носители данных, например диск, виртуальные диски, облачное хранилище данных и т.п.

Группирующий блок 20 группирует совпадающие пары в один из виртуальных кадров 14 на основании пространственного местоположения, в котором произошло событие аннигиляционного распада. Группировка включает в себя пересчет из системы координат детекторов в систему координат опоры субъекта. Если субъект не перемещается, то опора субъекта и субъект совместно используют одну и ту же систему координат. Две системы координат совместно используют одинаковую планарную позицию или x-y-координаты и различаются только в z- или аксиальном направлении. Группировка различает разность между zd или координатой детектора и zs или координатой опоры субъекта. Решение может выполняться с использованием момента времени из данных в режиме списка и относительной позиции опоры субъекта в тот же момент времени. Относительная позиция опоры субъекта определяется по начальной позиции, скорости и затраченному времени и/или датчиками, которые определяют позицию в момент времени. Например, с моментом t0 времени начальной позиции, координатой zs=0 и скоростью 10 мм/с, в момент времени ti=50 с относительная координата равна zs=500 мм. Если начальная координата zs=zd для начальной позиции. То координата zs события, которое произошло в момент времени ti, задается как zd+500 мм. В качестве альтернативы, если известна позиция zs в моменты времени t1 и t2, и метка времени сбора данных указывает, что событие произошло в момент времени td, где t1<td<t2, и скорость является относительно постоянной, то позицию zs можно интерполировать для момента времени td.

Каждую совпадающую пару можно группировать в реальном времени, когда пара принимается, или ретроспективно из памяти данных в режиме списка. Группировка может включать в себя приписывание индекса, идентифицирующего его виртуальный кадр, совпадающей паре в памяти данных в режиме списка и/или распределение совпадающей пары в соответствующий отдельный список для каждого виртуального кадра 21. Следует отметить, события совпадающих пар группируются по пространственному местоположению, а не по времени обнаружения. В частности, когда граница раздела между двумя кадрами будет перемещаться по полю видения, события двух смежных кадров будут разбросаны по времени.

После того как виртуальный кадр вышел из поля видения, для виртуального кадра больше нельзя записать совпадающих пар событий. После того как все совпадающие пары, присутствующие в памяти данных в режиме списка в момент или до момента времени, когда каждый виртуальный кадр выходит из поля видения, сгруппированы, данный виртуальный кадр можно реконструировать. Каждый виртуальный кадр может быть реконструирован отдельно блоком 22 реконструкции. Блок 22 реконструкции реконструирует каждый виртуальный кадр с использованием совпадающих пар, сгруппированных для соответствующего виртуального кадра. Виртуальный кадр представляет законченную элементарную операцию реконструкции, которая может использовать методы распределенной обработки данных. Например, первый виртуальный кадр может быть распределен первому процессору, сконфигурированному с возможностью выполнения реконструкции, например реконструкции в декартовых координатах, реконструкции на основе синограмм или подобной реконструкции. В то время, когда первый процессор реконструирует первый кадр в изображение, данные снова и снова собираются для следующих виртуальных кадров. Когда данные для второго виртуального кадра становятся доступными в результате выхода кадра из поля видения и группировки совпадающих пар, второму процессору распределяется реконструкция второго виртуального кадра. По мере того как реконструкция каждого виртуального кадра в изображение заканчивается, процессору может быть повторно распределена реконструкция другого виртуального кадра. Процессоры могут включать в себя многоядерные процессоры и множественные процессоры и/или сочетания.

По мере того как блок реконструкции заканчивает реконструкцию каждого виртуального кадра в изображение, изображение кадра объединяется с другими реконструированными изображениями удлиненного изображения и может отображаться на устройстве 24 отображения, например, устройстве отображения рабочей станции 26. Устройство отображения может включать в себя компьютерный монитор, телевизионный экран, сенсорный экран, электроннолучевую трубку (ЭЛТ), плоскопанельный дисплей, дисплеи на светоизлучающих диодах (СД), электролюминесцентный дисплей (ЭЛД), плазменные дисплейные панели (ПДП), жидкокристаллический дисплей (ЖКД), дисплеи на органических светоизлучающих диодах (ОСД), проектор и т.п. Рабочая станция 26 включает в себя электронный процессор или электронные процессорные устройства 30. Дисплей 24 отображает удлиненное реконструированное изображение или каждый виртуальный кадр и меню, панели и элементы пользовательского управления, например, ввода или выбора информации о конфигурации, используемой блоком 16 кадрирования. Рабочая станция 20 может быть настольным компьютером, портативным компьютером, планшетом, мобильным компьютерным устройством, интеллектуальным телефоном и т.п. Устройство ввода может быть клавиатурой, мышью, микрофоном и т.п. Различные блоки 16, 20, 22 соответственно осуществляются посредством электронного устройства обработки данных, запрограммированного для выполнения функций различных блоков, и могут включать в себя электронный процессор или электронное процессорное устройство 28 рабочей станции 26 или посредством сетевого компьютера-сервера, соединяемого для работы с рабочей станцией 26, и так далее. Кроме того, раскрытые методы кадрирования, группировки и реконструкции соответственно реализуются с помощью постоянного носителя данных, хранящего команды (например, программное обеспечение), считываемые электронным устройством обработки данных и выполняемые электронным устройством обработки данных, чтобы выполнять раскрытые методы кадрирования, группировки и реконструкции. В качестве альтернативы, изображения каждого виртуального кадра можно повторно компоновать в объем изображения и сохранять в системе управления запоминающими устройствами, например, системах архивации и передачи изображений (PACS), радиологической информационной системе и т.п.

Фигура 2 схематически изображает примерный сбор данных с CBM и виртуальными кадрами 14. Объем субъекта, подлежащего визуализации, начинается в начальной точке 32 и заканчивается в конечной точке 34. Объем подразделяется на смежные виртуальные кадры 14. Сбор данных или аксиальная зона охвата сканера продолжается с начального момента времени 36, когда передний край первого кадра входит в поле видения, до конечного момента времени 38, когда задний край последнего кадра выходит из поля видения. Полный сбор 40 данных для каждого виртуального кадра 14 включает в себя передний компонент 42, основной компонент 44 и задний компонент 46. Передний компонент включает в себя линии LOR, которые содержат одну концевую точку в пределах виртуального кадра и одну концевую точку в переднем кадре. Основной компонент включает в себя линии LOR с обеими концевыми точками в виртуальном кадре, и задний компонент содержит одну концевую точку в виртуальном кадре и одну концевую точку в следующем кадре. Геометрия детекторов влияет на длину переднего и заднего компонентов. Размер туннеля и аксиальная протяженность детекторов определяет возможные линии LOR. Многие линии LOR возникают под углами, не ортогональными к оси перемещения. Таким образом, линии LOR могут пересекать виртуальные кадры, что означает, что сбор данных перекрывается между кадрами.

Фигура 3 схематически изображает примерное движение CBM с TOF (времяпролетной) группировкой по виртуальным кадрам совпадающих пар событий, которые охватывают два кадра. Совпадающая обнаруженная пара событий из первого 50 и второго 52 обнаруженных гамма-фотонов задает концевые точки линии срабатывания (LOR) 54. Позиция события аннигиляции, например E1 56 или E2 58, которое испустило обнаруженные гамма-фотоны, наблюдаемые вдоль линии LOR, определяется с помощью времяпролетной информации. Времяпролетная (TOF) информация обеспечивает информацию для определения местоположения или вероятностной кривой диапазона местоположений вдоль линии LOR, на которой произошло событие аннигиляции. Относительная позиция опоры субъекта, использующая синхронизированный момент времени, и/или позиция опоры субъекта обеспечивает пересчет в систему координат опоры субъекта. Таким образом, время пролета обеспечивает оценку, которая определяет в данном примере событие, возникшее в местоположении E1 или в местоположении E2. В случае возникновения в E1, обнаруженное совпадающее событие группируется в виртуальном кадре A посредством различения разности координат между детектором и опорой субъекта. В случае возникновения в E2 обнаруженное совпадающее событие группируется в виртуальном кадре B. Группировка выполняется группирующим блоком 20.

Местоположения пар гамма-фотонов определяются на основании позиции в системе координат опоры субъекта. Данная система включает в себя систему координат субъекта, который не двигается относительно опоры субъекта. Пары гамма-фотонов обнаруживаются как совпадающие пары посредством детекторов в системе координат детекторов. Группировка различает разность между двумя системами координат. В случае, когда TOF информация показывает событие, происходящее на границе кадра, событие можно различить либо группировкой события в обоих кадрах и взвешиванием границы в процессе реконструкции для перекрытия, либо группировкой по переднему краю, либо группировкой по заднему краю и т.п.

Группировка может включать в себя приписывание идентификатора, например индекса, данным в режиме списка и/или распределение данных в режиме списка по отдельным спискам. Отдельные списки можно использовать для предупреждения конфликтных ситуаций на уровне файлов и улучшения доступа к данным во время реконструкции. В данном примере, событие E1 распределяется в файл 60 списка для виртуального файла A, и событие E2 распределяется в файл 62 списка для виртуального файла B, на основании аксиальной координаты в момент времени t. Каждый список виртуального кадра A 60 и виртуального кадра B 62 включает в себя сгруппированные совпадающие пары или события для соответствующего виртуального кадра.

Вместо группировки по TOF события можно группировать другими способами, в частности, если TOF информация отсутствует. В одном примере событие аннигиляции распределяется кадру, который пересекается наибольшим участком линии LOR. В другом примере событие аннигиляции распределяется пропорционально обоим кадрам, например, на основании участков линии LOR.

Фигура 4 представляет блок-схему последовательности операций для одного способа применения варианта осуществления движения CBM с виртуальными кадрами. На этапе 64 виртуальные кадры 14 конфигурируются блоком 16 кадрирования. Конфигурация виртуальных кадров задает длину виртуального кадра вдоль аксиального направления 8 движения CBM. Виртуальные кадры 14 конфигурируются на основании ввода данных медицинским работником, медицинской карты субъекта, информации о конфигурации для TOF-ПЭТ сканера, распределенных вычислительных ресурсов и т.п.

После введения радиофармацевтического препарата и укладки субъекта 12 на опору 3 субъекта медицинским работником включает начало непрерывного движения стола (CBM) или перемещения опоры субъекта на этапе 66. Опора субъекта перемещается в режиме непрерывного движения и, предпочтительно, с, по существу, постоянной скоростью. Позиционные датчики и/или время определяют точную позицию опоры субъекта и виртуальных кадров. Непрерывное движение обеспечивает комфорт для пациента по сравнению с методами пошагового сканирования.

На этапе 68, система непрерывно принимает обнаруженные совпадающие пары, которые задают линии LOR в данных в режиме списка. Обнаруженные совпадающие пары включают в себя времяпролетную информацию. Обнаруженные совпадающие пары записываются в память данных в режиме списка. Пока опора субъекта двигается, система может непрерывно принимать обнаруженные данные. Движение CBM через детекторы вдоль аксиального направления обеспечивает более равномерный аксиальный профиль чувствительности. Дискретизация по аксиальной длине, которая проходит через детекторы, обеспечивает улучшенные осевую дискретизацию и пространственное разрешение. В альтернативном варианте осуществления информацию из других средств, например КТ, используют, чтобы задать виртуальный кадр для начала сбора данных для сбора данных, адаптированного к области интереса.

Обнаруженные совпадающие пары в памяти 18 данных в режиме списка группируются на этапе 70 посредством группирующего блока 20. Группировка может начинаться, как только каждое событие совпадающей пары записывается в памяти 18 данных в режиме списка и продолжается по мере того, как события добавляются в память. Группировка различает разность между системой координат детекторов 4 и опоры 3 субъекта и группирует событие в виртуальный кадр, в котором, как установлено или получено проецированием, произошло событие аннигиляции. Сгруппированный виртуальный кадр может включать в себя идентификатор, введенный в память данных в режиме списка, или сгруппированный виртуальный кадр может включать в себя распределение события в отдельный список для каждого виртуального кадра, соответственно.

Когда виртуальный кадр 14 покидает поле 10 видения детекторов 4, сбор данных для виртуального кадра заканчивается. В ряде параллельных этапов 70, реконструирующий блок 22 реконструирует каждый сгруппированный виртуальный кадр. Реконструкция каждого кадра использует отдельный список каждого виртуального кадра или индекс идентификаторов в памяти данных в режиме списка. Например, первый виртуальный кадр реконструируется на этапе 66, и конечный виртуальный кадр N реконструируется отдельно на этапе 68. Реконструкция виртуальных кадров по отдельности предусматривает применение методов распределенных вычислений для уменьшения узких мест вычислений и эффективной параллельной реконструкции изображения. Для каждой параллельной реконструкции можно использовать информацию, например карты ослабления, из других средств.

По мере того как каждая параллельная реконструкция заканчивается, реконструированное изображение каждого виртуального кадра, при желании, отображается на устройстве 24 отображения во время ряда параллельных этапов 76. Например, когда реконструкция первого виртуального кадра 66 заканчивается, изображение первого виртуального кадра отображается на устройстве отображения на этапе 72. Последующие виртуальные кадры могут отображаться бок о бок, с перекрытием и т.п. Отображение может продолжаться для каждого виртуального кадра, заканчивая конечным виртуальным кадром N на этапе 74. Кадры повторно компонуются 78 в непрерывное удлиненное изображение. Удлиненное изображение отображается, сохраняется в архивах пациентов и т.п. Медицинский работник может взаимодействовать с системой с помощью устройства 30 ввода.

Следует понимать, что в связи с конкретными наглядными вариантами осуществления, приведенными в настоящем описании, некоторые конструктивные и/или функциональные признаки описаны как включенные в определенные элементы и/или компоненты. Однако предполагается, что с такой же или подобной пользой упомянутые признаки могут быть также аналогичным образом включены в другие элементы и/или компоненты, в подходящем случае. Также следует понимать, что разные аспекты примерных вариантов осуществления можно выборочно использовать как подходящие для получения других альтернативных вариантов осуществления, пригодные для требуемых применений, при этом другие альтернативные варианты осуществления реализуют тем самым соответствующие преимущества заложенных в них аспектов.

Следует также понимать, что функции конкретных элементов или компонентов, описанных в настоящей заявке, могут быть соответственно реализованы посредством аппаратного обеспечения, программного обеспечения, программно-аппаратного обеспечения или их сочетания. Кроме того, следует понимать, что некоторые элементы, описанные в настоящей заявке как объединенные, могут быть в подходящих условиях независимыми или иначе разделенными элементами. Аналогично, множество конкретных функций, описанных как выполняемые одним конкретным элементом, могут выполняться множеством отдельных элементов, работающих независимо для выполнения отдельных функций, или некоторые отдельные функции можно разделить и выполнять множеством совместно работающих отдельных элементов. В качестве альтернативы, напротив, некоторые элементы или компоненты, описанные и/или показанные в настоящей заявке как отдельные друг от друга, можно физически или функционально объединять в подходящих случаях.

Вкратце, настоящее описание приведено выше со ссылкой на предпочтительные варианты осуществления. Безусловно, специалистам после прочтения и изучения настоящего описания придут на ум модификации и изменения. Предполагается, что изобретение следует интерпретировать как включающее в себя все упомянутые модификации и изменения в той степени, в которой они находятся в пределах объема охраны прилагаемой формулы изобретения или ее эквивалентов. То есть будет ясно, что многие из раскрытых выше и других признаков и функций или их альтернативы можно, при желании, объединять во многих других разных системах или областях применения, а также, что различные непредусмотренные или непредвиденные на данный момент альтернативы, модификации, варианты или усовершенствования в настоящей заявке могут быть впоследствии созданы специалистами в данной области техники, которые, как аналогично предполагается, должны охватываться нижеприведенной формулой изобретения.


ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА
ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА
ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА
ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА
ВИРТУАЛЬНЫЕ КАДРЫ ДЛЯ РАСПРЕДЕЛИТЕЛЬНОЙ ВРЕМЯПРОЛЕТНОЙ РЕКОНСТРУКЦИИ ДАННЫХ В РЕЖИМЕ СПИСКА С НЕПРЕРЫВНЫМ ДВИЖЕНИЕМ СТОЛА
Источник поступления информации: Роспатент

Showing 901-910 of 1,727 items.
13.09.2018
№218.016.86dc

Комплект для использования в приборе для создания жидких капель

Изобретение относится к комплекту для использования в приборе для создания жидких капель и может быть использовано в ультразвуковых сетчатых аэрозольных распылительных устройствах, в частности в аэрозольном приборе. Комплект для использования в приборе для создания жидких капель содержит...
Тип: Изобретение
Номер охранного документа: 0002666864
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.8712

Ручная система поддержки давления для лечения гиперинфляции

Группа изобретений относится к медицинской технике. Портативная ручная система поддержки давления сконфигурирована с возможностью доставлять находящийся под давлением поток дыхательного газа в дыхательные пути субъекта и содержит генератор давления, соединенный по текучей среде с интерфейсом...
Тип: Изобретение
Номер охранного документа: 0002666877
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.8714

Оптическая система и способ для анализа в реальном времени жидкого образца

Настоящее изобретение относится к оптической системе и способу для выполнения в реальном времени анализа жидкого образца, содержащего определение характеристики в зависимости от времени жидкого образца, содержащего множество объектов. Заявленная группа изобретений включает оптическую систему...
Тип: Изобретение
Номер охранного документа: 0002666816
Дата охранного документа: 12.09.2018
14.09.2018
№218.016.87ee

Дешевый безопасный дисплей для магнитного резонанса с сенсорным экраном

Использование: для применения в качестве вспомогательного прибора, совместимого с магнитно-резонансной (МР) томографией. Сущность изобретения заключается в том, что безопасный дисплей для магнитного резонанса (МР) с сенсорным экраном включает в себя сенсорный экран и пленку, которая имеет...
Тип: Изобретение
Номер охранного документа: 0002666959
Дата охранного документа: 13.09.2018
16.09.2018
№218.016.882f

Паровой утюг

Предложен паровой утюг, содержащий парогенератор и герметичную камеру, имеющую входное отверстие, расположенное так, что при перемещении утюга из положения глажения в положение не глажения кальцинированные отложения, образованные в парогенераторе, падают под действием силы тяжести через...
Тип: Изобретение
Номер охранного документа: 0002667134
Дата охранного документа: 14.09.2018
16.09.2018
№218.016.8836

Способы и устройства для кодирования hdr-изображений и способы и устройства для использования таких кодированных изображений

Изобретение относится к области кодирования/декодирования изображений. Технический результат – обеспечение улучшенного кодирования/декодирования изображения с широким динамическим диапазоном. Способ кодирования изображения с широким динамическим диапазоном содержит этапы, на которых:...
Тип: Изобретение
Номер охранного документа: 0002667034
Дата охранного документа: 13.09.2018
22.09.2018
№218.016.8909

Планирование траектории рамы с-типа для оптимального получения изображений в эндоскопической хирургии

Группа изобретений относится к области получения изображений. Система получения изображений содержит первое устройство (102) визуализации, выполненное с возможностью получения изображений объекта из по меньшей мере одного положения; второе устройство (124) визуализации, выполненное с...
Тип: Изобретение
Номер охранного документа: 0002667326
Дата охранного документа: 18.09.2018
23.09.2018
№218.016.8a0b

Устройство аудиообработки и способ для этого

Изобретение относится к средствам для аудиообработки. Технический результат заключается в улучшенной адаптации к различным конфигурациям громкоговорителей. Принимают аудиоданные и конфигурационные данные воспроизведения. Аудиоданные содержат аудиоданные для множества аудиокомпонентов, а...
Тип: Изобретение
Номер охранного документа: 0002667630
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a0f

Система и способ эластографических измерений

Группа изобретений относится к медицинской технике, а именно к средствам для ультразвуковых эластографических измерений. Система для ультразвукового исследования анатомического участка содержит ультразвуковой зонд, сконфигурированный для передачи ультразвукового сигнала к анатомическому...
Тип: Изобретение
Номер охранного документа: 0002667617
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a38

Способ кодирования сигнала видеоданных для использования с многовидовым устройством визуализации

Изобретение относится к способу кодирования сигнала видеоданных. Технический результат заключается в обеспечении возможности добавления дополнительных форматов, обеспечивающих поддержку передачи стереоизображений и ассоциированной информации глубины. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002667605
Дата охранного документа: 21.09.2018
Showing 621-629 of 629 items.
04.04.2018
№218.016.318d

Насадка пылесоса

Настоящее изобретение относится к насадке (2) пылесоса. Насадка (2) пылесоса имеет основание (10) и отверстие (8) всасывания в основании (10). Из основания (10) выступает массив (35) гибких клапанов (40). Гибкие клапаны (40) выполнены с возможностью воздействия на подлежащую очистке...
Тип: Изобретение
Номер охранного документа: 0002645145
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31ec

Обнаружение зубного налета с использованием потокового зонда

Предложено устройство (100, 100') обнаружения с зубным потоковым зондом, которое выполнено так, что прохождение текучей среды (30) через открытое отверстие (136, 2604) дистального кончика (112, 112') зонда обеспечивает возможность обнаружения вещества (116) на зубной поверхности (31, 33) на...
Тип: Изобретение
Номер охранного документа: 0002645212
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3367

Узел вакуумной колбы

Изобретение относится к узлу (1) вакуумной колбы, контейнеру (3) для вакуумной колбы (2) и комплекту детской бутылочки. Узел (1) вакуумной колбы содержит вакуумную колбу (2) с крышкой (5) с нажимной кнопкой. Крышка (5) с нажимной кнопкой является перемещаемой между открытым состоянием и...
Тип: Изобретение
Номер охранного документа: 0002645608
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.337a

Обнаружение налета с использованием потокового зонда

Предложено зубное устройство (100, 100') обнаружения с потоковым зондом, которое имеет такую конфигурацию, в которой прохождение текучей среды (30) через открытый порт (136, 2604) дистального наконечника (112, 112') зонда обеспечивает обнаружение вещества (116) на дентальной поверхности (31,...
Тип: Изобретение
Номер охранного документа: 0002645605
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.337d

Обнаружение десны с использованием оптического детектора в устройстве обнаружения зубной гигиены

Предложенное устройство (1000) обнаружения позволяет обнаруживать вещество (116), которое может присутствовать на поверхности (31, 33), на основании измерения сигнала зонда потока, коррелирующего с веществом (116), по меньшей мере частично препятствующим прохождению текучей среды (30, 35) через...
Тип: Изобретение
Номер охранного документа: 0002645603
Дата охранного документа: 26.02.2018
04.04.2018
№218.016.33cf

Лазер с вертикальным резонатором и поверхностным излучением

Изобретение относится к лазерной технике. Лазер с вертикальным резонатором и поверхностным излучением (VCSEL) содержит первый электрический контакт, подложку, первый распределенный брэгговский отражатель, активный слой, распределенный биполярный фототранзистор на гетеропереходах, второй...
Тип: Изобретение
Номер охранного документа: 0002645805
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3590

Устройство для преобразования движения пользователя в электрическое напряжение

Группа изобретений относится к средствам мониторинга состояния пользователя за счет преобразования движения пользователя в электрическое напряжение. Раскрыты устройство (10) и способ преобразования движения пользователя в электрическое напряжение, устройство (90), система (100) и способ для...
Тип: Изобретение
Номер охранного документа: 0002645876
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.36b0

Способ и система выбора частоты проведения анализа газового состава артериальной крови для новорожденных

Группа изобретений относится к области определения частоты проведения анализа газового состава артериальной крови. Способ определения частоты проведения анализа газового состава артериальной крови (ABG) содержит этапы, на которых: принимают предыдущие результаты ABG-анализа; определяют исходное...
Тип: Изобретение
Номер охранного документа: 0002646480
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3768

Ультразвуковая установка отображения изображений для удаленного терминала отображения

Изобретение относится к медицинским диагностическим ультразвуковым системам. Техническим результатом является оптимизация ультразвукового изображения для отображения на удаленных рабочих станциях, терминалах и экранах отображения. Изображение, полученное ультразвуковой системой, обрабатывается...
Тип: Изобретение
Номер охранного документа: 0002646593
Дата охранного документа: 06.03.2018
+ добавить свой РИД