×
13.02.2018
218.016.1eda

Результат интеллектуальной деятельности: СПОСОБ ХИМИЧЕСКОЙ МОДИФИКАЦИИ ЭЛАСТОМЕРОВ В РАСТВОРЕ ХЛОРСОДЕРЖАЩЕГО УГЛЕВОДОРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической модификации эластомеров и может быть использовано для получения растворов хлорированных синтетических каучуков, предназначенных для получения клеев и защитных покрытий для резинотехнических изделий. Способ химической модификации эластомера включает взаимодействие эластомера с хлорсодержащим реагентом, в качестве которого используют хлорсодержащий углеводород общей формулы СНСl, где n=10-30, х=7-24. Взаимодействие осуществляют при перемешивании в неполярном растворителе при комнатной температуре при соотношении компонентов, (масс. %): хлорсодержащий углеводород 1-3, эластомер 5-20, неполярный растворитель - остальное. Изобретение позволяет получить продукт с повышенным содержанием хлора при снижении энергозатрат и упрощении технологии и позволяет использовать его в готовом виде. 2 табл.

Изобретение относится к области химической модификации эластомеров и может быть использовано для получения растворов хлорированных синтетических каучуков, предназначенных для получения клеев и защитных покрытий для резинотканевых изделий, таких как пневмокаркасные сооружения, конвейерные ленты, пожарные рукава и др.

Эластомерные галогенсодержащие материалы представляют большой практический интерес в качестве защитных покрытий от агрессивных внешних воздействий для изделий из резинотканевых материалов, поскольку характеризуются повышенной тепло-, озоно-, масло- и бензостойкостью, негорючестью, стойкостью к воздействию агрессивных сред, высокой прочностью и адгезионной активностью [Донцов А.А., Лозовик Г.Я., Новицкая С.П. Хлорированные полимеры. - М.: Химия, 1979. - 232 с.].

Для получения галоидированных эластомеров в промышленных масштабах наиболее часто используют так называемые «растворные» технологии, в которых газообразный галоген пропускают через раствор эластомера в органическом растворителе.

Например, известен непрерывный способ и устройство для галоидирования эластомеров, в соответствии с которыми хлорирование или бромирование бутилкаучука, растворенного в органическом растворителе, проводят в колонном насадочном аппарате, поддерживая поток эластомера в турбулентном движении [RU 2148589, С2, опубл. 10.05.2000]. Введение галоидирующего агента - хлора или брома - в раствор каучука осуществляют при атмосферном давлении и температуре выше 10°С в атмосфере инертного газа, как правило, азота. Наличие в устройстве объема, заполненного избытком газообразного галогена, требует введения в систему инертного газа в таком количестве, чтобы не допустить образования взрывоопасных концентраций смеси галоген - растворитель. Введение азота в реакционную зону приводит к тому, что процесс проходит в диффузионной области, и требуются специальные приемы эффективного поглощения из абгаза непрореагировавшего галогена.

Описан способ непрерывного получения галогенированного эластомера [RU 2003132060 А, опубл. 10.01.2005], включающий подачу предварительно разбавленного инертным газом или растворителем галогенирующего агента (хлор, бром, йод, соединения, которые выделяют хлор, бром, йод и/или их смеси) в непрерывный поток раствора эластомера, нейтрализацию галогенированного эластомера посредством нейтрализующей среды и промывку посредством промывочной среды в условиях турбулентности с явлением инверсии и с последовательным отводом избытка галогенирующего агента и отстоя промывочной и нейтрализующей сред из галогенированного эластомера. Процесс ведут при температуре не ниже 8°С. Содержание галогена в галогенированном эластомере составляет не менее 0,7%.

Согласно способа получения высокомолекулярного галогенированного каучука по заявке [RU 2012135376, опубл. 27.02.2014], в качестве галогенирующего агента используют молекулярный хлор или бром в сочетании с окислителем в концентрации 0,1 до 20 мас. % от массы каучука, растворенного в смеси алифатических углеводородов с температурой кипения в диапазоне от 45°С до 80°С при давлении 1013 гПа.

Приведенные примеры использования «растворных» технологий и большое количество других сходных известных технических решений, характеризуются рядом общих недостатков, главные из которых следующие:

- Применение в качестве галоидирующих агентов химически агрессивных соединений, требующих при работе повышенных мер безопасности и предполагающих использование дорогостоящих устойчивых в агрессивных средах материалов;

- Многостадийность и длительность процесса;

- Полученный галоидированный эластомер содержит невысокое (не более 2%) количество галогена, что отрицательно сказывается на его потребительских свойствах - адгезионной способности, устойчивости к воздействию агрессивных сред, масло- и озоностойкости.

Недостатки, связанные с использованием агрессивных галоидирующих агентов, в значительной степени преодолеваются использованием технологий, основанных на твердофазной химической галоидной модификации. Способ получения хлорсодержащего эластомера твердофазной химической галоидной модификацией [RU 2215750 С2, опубл. 10.11.2003], как наиболее близкий по химической сущности к заявляемому способу, взят в качестве прототипа. Хлорсодержащий эластомер получают взаимодействием эластомера и хлорсодержащего реагента (модификатора) в резиносмесителе при температуре 80-150°С при перемешивании в течение 10-30 мин. В качестве хлорсодержащего реагента используют хлорированный углеводород общей формулы СnН(2n+2)-хСlх, где n=10-30, х=7-24, содержащий до 70 масс. % хлора и представляющий собой полигалогенпроизводное предельного углеводорода метанового ряда. Эластомер берут в количестве 75-95 масс. ч., а хлорированный углеводород - в количестве 5-25 масс. ч. Способ позволяет ускорить процесс, сократив количество стадий, обеспечить технологическую и экологическую безопасность производства, однако ему свойственны следующие недостатки, устраняемые предлагаемым изобретением:

- Эффективное перемешивание вязкой массы эластомера требует больших энергозатрат;

- Процесс сопровождается саморазогревом реакционной массы, поэтому требуется строгий контроль процесса и применение, в случае необходимости, мер для охлаждения смесительного оборудования;

- Способ позволяет получить продукт с содержанием галоида, не превышающим 10-11%, что недостаточно для получения покрытий, стойких к внешним воздействиям, обладающих высокой адгезией, негорючестью и прочностью.

Задачей настоящего изобретения является разработка усовершенствованного способа галоидного модифицирования эластомеров, позволяющего при снижении энергоемкости процесса и упрощении оборудования получать хлорированные полимеры, в том числе с повышенным содержанием связанного хлора.

Поставленная задача решена предлагаемым способом химической модификации эластомеров в растворе хлорсодержащего углеводорода, включающим взаимодействие эластомера с хлорсодержащим реагентом, в качестве которого используют хлорсодержащий углеводород общей формулы СnН(2n+2)-хСlх, где n=10-30, х=7-24, отличающимся тем, что взаимодействие осуществляют при перемешивании при комнатной температуре в неполярном растворителе при следующем соотношении компонентов (масс. %):

Хлорсодержащий углеводород 1-3
Эластомер 5-20
Неполярный растворитель остальное

Процесс происходит в жидкой фазе, суммарная концентрация раствора не превышает 21 масс. %. Низкая вязкость реакционной смеси позволяет вести процесс в обычном смесителе с перемешиванием, например в клеемешалке, что, в отличие от прототипа, не требует высоких энергозатрат, обусловленных необходимостью перемешивания вязкой массы, и при этом обеспечивает равномерное распределение модифицирующего агента и эластомера по объему. В этих условиях, в отличие от прототипа, не происходит саморазогрева реакционной смеси, процесс ведут при комнатной температуре без применения каких-либо средств охлаждения оборудования, что также упрощает и удешевляет технологию.

Как было отмечено выше, способ по прототипу и предлагаемый способ являются близкими по химической сущности, которая заключается в том, что оба способа основаны на закономерностях механохимической галоидной модификации. Однако, если в способе по прототипу галоидную модификацию инициируют силовые воздействия смесительного оборудования - резиносмесителя, вызывающие механодеструкцию эластомера, то в предлагаемом способе инициирование происходит за счет процесса механоактивации, возникающей под действием давления набухания, возникающего при взаимодействии каучука с растворителем.

Проведенные авторами ЭПР-исследования показали образование макрорадикалов в процессе набухания бутилкаучука (БК) и синтетического каучука этилен-пропилен-диенового тройного (СКЭПТ) в растворителе, что подтверждает протекание механодеструкционных процессов, инициированных давлением набухания. Известно, что механохимические процессы (механодеструкция и механоактивация) протекают с обратным температурным коэффициентом, то есть, чем ниже температура модификации, тем интенсивней протекает механохимические процессы. Возможность проведения галоидной модификации в растворе при комнатной температуре способствует повышению концентрации макрорадикалов полимера и увеличению реакционной активности полимеров в процессе галоидной модификации по изобретению. Дополнительным фактором, повышающим реакционную способность эластомеров в заявляемом способе, является возможность более равномерного, по сравнению с прототипом, распределения реагентов в процессе галоидной модификации в жидкой фазе.

Важное различие между способом по прототипу и заявляемым способом состоит в том, что более высокая реакционная активность эластомеров в условиях заявляемого способа позволяет получить линейку продуктов с более широким диапазоном содержания галогена.

В качестве примера в таблице 1 приведены данные, показывающие на примере бутилкаучука и синтетического каучука этилен-пропилен-диенового тройного повышение реакционной активности эластомеров в реакции с хлорсодержащим углеводородом C15H22Cl10 при осуществлении заявляемого способа в сравнении со способом-прототипом. В обоих примерах количество исходного БК и СКЭПТ и хлорсодержащего модификатора одинаково, т.е. на 100 масс. % эластомера приходится 5 масс. % хлорсодержащего углеводорода. Реакционную активность (РА) оценивают как процентное соотношение между общим количеством хлора в полимере (Сlобщ.) и количеством химически связанного хлора (Сlсвяз.)

РА=Сlсвяз.общ.⋅100%

Способ осуществляют следующим образом.

В смесительное оборудование (клеемешалка) заливают ароматический растворитель, например, нефрас-Ар или толуол, в необходимом количестве, затем в растворитель вводят требуемое количество хлорсодержащего реагента СnН(2n+2)-хСlх, Раствор перемешивают при комнатной температуре (20-25°С) в течение нескольких минут до полного растворения хлорсодержащего реагента. Далее в полученный раствор хлорсодержащего реагента вводят необходимое количество эластомера в виде мелких гранул или крошки. Смесь перемешивают в течение 50-60 минут. Полученный продукт представляет собой раствор хлорсодержащего эластомера. Содержание связанного хлора определяют методом Шенигера [Schoniger W., "Mikrochim. Acta", 1955, №1, S. 123-29].

Примеры осуществления изобретения представлены в таблице 2.

Из таблицы 2 видно, что в условиях заявляемого способа можно получать эластомеры, в которых содержание хлора для бутилкаучука достигает 18,8% моль, а для СКЭПТ - 15,0% моль, в то время как способ-прототип позволяет получить БК, содержащий не более 8,0% моль, а СКЭПТ - не более 10,5% моль хлора. Таким образом, заявляемый способ позволяет при снижении энергозатрат и упрощении технологии получать хлорированные эластомеры с высоким содержанием галоида, отвечающие требованиям, предъявляемым к материалам, предназначенным для использования в качестве клеев и защитных покрытий для резинотканевых изделий.

Важно также отметить, что в отличие от способа-прототипа, согласно которому галоидированный полимер получают в твердом состоянии, заявляемый способ позволяет получить продукт в виде маловязкого раствора. Это является важным технологическим преимуществом, поскольку получаемый продукт готов для непосредственного применения в качестве основы комплексных композиционных составов - клеев и защитных покрытий для резинотканевых пневмоконструкций и других объектов.

Источник поступления информации: Роспатент

Showing 31-38 of 38 items.
22.08.2019
№219.017.c22a

Способ получения магнитных липосом

Изобретение относится к фармацевтической промышленности, а именно к способу получения магнитных липосом. Способ получения магнитных липосом включает получение суспензии, включающей фосфатидилхолин и магнитные наночастицы, ее обработку ультразвуком и последующую повторяющуюся процедуру ее...
Тип: Изобретение
Номер охранного документа: 0002697802
Дата охранного документа: 20.08.2019
01.09.2019
№219.017.c501

Металлооксидный солнечный элемент

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии. Предложен металлооксидный солнечный элемент на основе наноструктурированных слоев металлооксида, сенсибилизированного поглощающей свет субстанцией, включающий...
Тип: Изобретение
Номер охранного документа: 0002698533
Дата охранного документа: 28.08.2019
13.12.2019
№219.017.ecd6

Применение полиакрилата золота в качестве ингибитора роста клеток меланомы человека

Изобретение относится к области медицинской химии и онкологии. Предложено применение полиакрилата золота (полимера полиакриловой кислоты, содержащего ионы золота (III)) в качестве цитотоксического средства для химиотерапии меланомы. Технический результат: полиакрилат золота обладает высокой...
Тип: Изобретение
Номер охранного документа: 0002708626
Дата охранного документа: 10.12.2019
11.07.2020
№220.018.3169

Производные изоксазола, обладающие антиагрегационной активностью

Изобретение относится к области биоорганической и медицинской химии и фармакологии и может быть использовано для разработки новых противоагрегационных лекарственных средств. Раскрыто применение соединений общей формулы (значения заместителей указаны в п. 1 формулы изобретения) в качестве...
Тип: Изобретение
Номер охранного документа: 0002726127
Дата охранного документа: 09.07.2020
20.04.2023
№223.018.4bae

Способ улучшения эксплуатационных свойств нетканого волокнистого материала

Изобретение относится к способам улучшения эксплуатационных свойств нетканых волокнистых материалов из поли-3-гидроксибутирата, полученных электроформованием из раствора, и может быть использовано для получения биоразлагаемых материалов для широкого спектра биомедицинских применений, включая...
Тип: Изобретение
Номер охранного документа: 0002760862
Дата охранного документа: 01.12.2021
14.05.2023
№223.018.55ab

Способ оценки антиоксидантной активности биологически активных препаратов

Изобретение относится к области определения антиоксидантной активности биологически активных препаратов и может быть использовано в фармацевтике, косметологии и пищевой промышленности для оценки и сравнения антиоксидантной активности жидких водорастворимых форм, полученных из природного сырья,...
Тип: Изобретение
Номер охранного документа: 0002738302
Дата охранного документа: 11.12.2020
15.05.2023
№223.018.5835

Огнебиозащитное средство для древесины (варианты)

Группа изобретений относится к области огнебиозащиты древесины. Продукт, получаемый жидкофазным каталитическим окислением измельченной лигноцеллюлозной биомассы древесины хвойных пород, применяют в качестве огнебиозащитного средства для древесины. Огнебиозащитное средство для древесины...
Тип: Изобретение
Номер охранного документа: 0002768389
Дата охранного документа: 24.03.2022
16.05.2023
№223.018.63ec

Алмазоподобные пленки на основе модифицированного графена

Изобретение относится к нанотехнологии и может быть использовано для получения широкозонных плёнок нанометровой толщины для оптических устройств, диэлектрических подложек, прослоек в суперконденсаторах и слоистых гетероструктурах. В алмазоподобных плёнках на основе модифицированного графена...
Тип: Изобретение
Номер охранного документа: 0002772338
Дата охранного документа: 18.05.2022
Showing 31-33 of 33 items.
30.05.2023
№223.018.7301

Способ получения универсального битумно-полимерного состава

Изобретение относится к области ремонта дорожных покрытий и бетонных конструкций и предназначено для заделки швов и трещин в асфальтобетонных и цементобетонных покрытиях, в частности к способу получения битумно-полимерного состава. Способ включает совмещение бутадиен-нитрильного каучука в...
Тип: Изобретение
Номер охранного документа: 0002777892
Дата охранного документа: 11.08.2022
30.05.2023
№223.018.7315

Устройство для моделирования процесса выбора изделия

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей устройства за счет выбора наилучшего варианта изделия по заданным потребителем критериям. Технический результат достигается за счет устройства для моделирования...
Тип: Изобретение
Номер охранного документа: 0002779255
Дата охранного документа: 05.09.2022
30.05.2023
№223.018.73b1

Многослойный пленочный или листовой биоразлагаемый материал и биоразлагаемая полимерная композиция для создания биоразлагаемого слоя в материале

Изобретение относится к многослойным пленочным или листовым материалам на биоразлагаемой основе. Многослойный материал включает один или более биоразлагаемых слоев. Биоразлагаемый слой или слои выполнены из термопластичной полимерной композиции на основе дисперсного наполнителя природного...
Тип: Изобретение
Номер охранного документа: 0002752345
Дата охранного документа: 26.07.2021
+ добавить свой РИД