×
13.02.2018
218.016.1ed9

Способ получения водного раствора полианилина

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению водных растворов полианилина. Способ получения его включает обработку полианилина водным раствором полимерного реагента. Полимерный реагент получен взаимодействием безводной серной кислоты с гексаметилентетрамином в две стадии. Полученный далее высушенный продукт с условным наименованием аминокумулен растворяют в кислом водном растворе при массовом соотношении аминокумулена к полианилину от 0,25:1 до 4:1. Обработку полианилина проводят при действии ультразвука, хотя возможно применение диспергирующих устройств, работающих на других физических принципах, например роторно-импульсного аппарата, различных дезинтеграторов. Изобретение обеспечивает получение водорастворимой формы полианилина, используемого для синтеза нанокомпозиционных материалов. 1 з.п. ф-лы, 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к технологии проводящих полимеров, конкретно к технологии переработки полианилина.

Полианилин (ПАНИ) является электропроводящим полимером с системой сопряженных связей. ПАНИ получают окислительной полимеризацией анилина в кислом водном растворе. В качестве окислителя обычно применяют персульфат аммония. Если ПАНИ осажден из кислого водного раствора (например в присутствии минеральной кислоты), часть атомов азота протонируются, а анион кислоты входит в состав ПАНИ. Обычной формой ПАНИ является зеленый эмеральдин, содержащий, например, соляную кислоту. Если протонированный ПАНИ обработать основанием (например, аммиаком) и затем промыть водой, кислотные остатки уходят, и получается эмеральдин-основание. ПАНИ в различных формах находит применение для создания композиционных материалов, радиопоглощающих покрытий, химических источников тока, для адсорбции вредных неорганических веществ, биологически активных молекул, обезвреживания бактерий, вирусов, и в других областях техники. Проблемой, затрудняющей применение ПАНИ в технике, является его нерастворимость в воде и в большинстве органических растворителей. Из известных органических растворителей полианилин растворяется только в N-метилпирролидоне (и то после растворения образует гель) и в N,N’-диметилпропилен-мочевине [R. Jain, R.V. Gregory. Solubility and rheological characterization of polyaniline base in N-methyl-2-pyrrolidinone and N,N-dimethylpropylene urea // Synthetic Metals. 1995. Vol. 74. P. 263-266]. Было проведено много исследований с целью найти способ придания растворимости полианилину в обычных органических растворителях и в воде, что дало бы возможность переработки этого полимера и изготовления из него различных композиционных материалов и изделий.

Ряд публикаций было посвящено синтезу органорастворимых форм полианилина.

В работе [Qiang Z., Liang G., Gu A., Yuan L. Hyperbranched polyaniline: A new conductive polyaniline with simultaneously good solubility and super high thermal stability // Materials Letters. 2014. Vol. 115. P. 159-161] описан синтез сверхразветвленного полианилина, отличающегося хорошей растворимостью в неполярных и малополярных растворителях. Синтез проводят путем обработки полианилина сверхразветвленным полисилоксаном.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным реагентом.

Недостатком данного способа является применение в качестве реагента полисилоксанового вещества, синтез которого очень сложен. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [Paul R.К., Vijayanathan V., Pillai C.K.S. Meltrsolution processable conducting polyaniline: doping studies with a novel phosphoric acid ester // Synthetic Metals. 1999. Vol. 104. Is. 3. P. 189-195] описан способ получения полианилина, растворимого в неполярных и малополярных органических растворителях, путем обработки полианилина 3-пентадецилфенольным эфиром фосфорной кислоты (ПДФФ). Синтез проводили или путем эмульсионной окислительной полимеризации анилина в присутствии ПДФФ, или же путем механической обработки заранее синтезированного полианилина в форме эмеральдинового основания с ПДФФ. Полученный модифицированный полианилин растворяется в неполярных и малополярных органических растворителях.

Общими существенными признаками известного и заявляемого способа является обработка полианилина органическим реагентом, обладающим свойствами ПАВ.

Недостатком данного способа является применение в качестве реагента дорогостоящего органического реагента. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [ N., Senkal В.F., Sezer Е. Preparation of organo-soluble polyanilines in ionic liquid // Synthetic Metals. 2005. Vol. 155. Is. 1. P. 105-109] описан способ приготовления органо-растворимого полианилина. Окислительную полимеризацию хлористого анилиния с персульфатом аммония проводили в новой ионной жидкости, 2-гидроксиэтил аммоний формиате. Полианилин, полученный этим способом, хорошо растворим во многих органических растворителях, таких как ацетон, тетрагидрофуран, диоксан, диметилформамид и N-метил, 2-пирролидон.

Общими существенными признаками известного и заявляемого способа является обработка полианилина органическим реагентом.

Недостатком данного способа является применение в качестве реагента дорогостоящего органического реагента. Кроме того, полученный модифицированный полианилин не растворим в воде.

В работе [Wang Y., Chen К., Li Т. [et al.] Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization // Synthetic Metals. 2014. Vol. 198. P. 293-299] растворимые в органических растворителях нановолокна полианилина были получены с помощью эмульсионной окислительной полимеризации анилина в присутствии фумаровой кислоты.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

В работе [Morales G.М., Salavagione Н.J., Grumelli D.E. [et al.] Soluble polyanilines obtained by nucleophilic addition of arenesulphinic acids // Polymer. 2006. Vol. 47. Issue 25. P. 8272-8280] растворимые в органических растворителях формы полианилина были получены обработкой полианилина в форме основания аренсульфиновыми кислотами.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

В работе [Liu P. Synthesis and characterization of organo-soluble conducting polyaniline doped with oleic acid // Synthetic Metals. 2009. Vol. 159. Is. 1-2. P. 148-152] растворимые в органических растворителях формы полианилина были получены эмульсионной окислительной полимеризацией анилина в присутствии олеиновой кислотой в качестве поверхностно-активного и легирующего вещества. Полианилин, полученный по этому методу, хорошо растворим во многих органических растворителях, таких как диметилсульфоксид (ДМСО), диметилформамид (ДМФ) и N-метил, 2-пирролидон (NMP).

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является то, что полученный полианилин не растворим в воде.

Работа с органическими растворителями, вполне приемлемая в лабораторных условиях, в условиях производства связана с такими проблемами, как токсичность, пожароопасность, утилизация отходов. Поэтому технологически наиболее удобными формами полианилина для применения в различных областях являются водорастворимые формы. Далее рассмотрены ряд публикаций, в которых описано получение растворимых в воде форм полианилина.

В работе [Ito S., Murata К., Teshima S. [et al.] Simple synthesis of water-soluble conducting polyaniline // Synthetic Metals. 1998. Vol. 96. Issue 2. P. 161-163] описан синтез водорастворимого полианилина. Полианилин в форме эмеральдиновой соли сульфируют хлорсульфоновой кислотой в дихлорэтане при 80°C и затем гидратируют в воде при температуре 100°C. Сульфирование эмеральдиновой соли или эмеральдинового основания приводит к получению HCl-легированного сульфонированного полианилина. Степень сульфирования (отношение серы и азота, S/N), можно регулировать путем регулирования количества хлорсульфоновой кислоты. С увеличением отношения S/N от 0,65 до 1,3 растворимость в нейтральной воде увеличивается от 22 до 88 г/л.

Общими существенными признаками известного и заявляемого способа является обработка полианилина химическим реагентом.

Недостатком данного способа является применение в качестве реагента агрессивного и токсичного вещества - хлорсульфоновой кислоты, а в качестве среды для проведения реакции используется дихлорэтан, который является крайне высокотоксичным веществом кумулятивного действия. Кроме того, данный синтез является сложным и многостадийным.

В работе [Planes G.A., Morales G.М., Miras М.С., Barbero С.А soluble and electroactive polyaniline obtained by coupling of 4-sulfobenzenediazonium ion and poly (N-methylaniline) // Synthetic Metals. 1998. Vol. 97. Issue 3. P. 223-227] описан способ получения водорастворимого производного поли(N-метиланилина) путем обработки поли(N-метиланилина) солью диазония.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полимерного производного анилина азотсодержащим органическим веществом.

Недостатком данного способа является сложный, долгий процесс модификации. Необходим точный контроль температуры и рН, иначе идут побочные реакции.

В работе [Amarnath С.А., Palaniappan S., Rannou P., Pron A. Acacia stabilized polyaniline dispersions: preparation, properties and blending with poly (vinyl alcohol) // Thin Solid Films. 2008. Vol. 516. Issue 10. P. 2928-2933] коллоидный водный раствор полианилина готовили путем окислительной полимеризации анилина в растворе поверхностно-активного вещества (ПАВ), в качестве которого применяли смолу акации.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина поверхностно-активным веществом.

Недостатком данного способа является многостадийный и сложный процесс получения композита ПАНИ-АКАЦИЯ. При этом, для получения тонкой коллоидной дисперсии ПАНИ необходимо выделение комплекса ПАНИ со смолой акации с повторным диспергированием в воде. Кроме того, смола акации, применяемая в качестве ПАВ, остается в продукте и это может мешать для ряда применений ПАНИ.

В работе [Gu Y., Tsai Ju-Ya. Enzymatic synthesis of conductive polyaniline in the presence of ionic liquid // Synthetic Metals. 2012. Vol. 161. Issue 23-24. P. 2743-2747] тонкодисперсный полианилин, обладающий способностью диспергироваться в воде, получали ферментативной полимеризацией анилина в присутствии пероксидазы, анионного ПАВ - додецилбензолсульфоната натрия и ионной жидкости.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина ПАВ.

Недостатком данного способа является многостадийный и сложный синтез с применением дорогостоящих реагентов. Кроме того, применяемое ПАВ остается в продукте, что может мешать для ряда применений полианилина.

В работе [Zou F., Xue L., Yu X. [et al.] One step biosynthesis of chiral, conducting and water soluble polyaniline in AOT micellar solution // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013. Vol. 429. P. 38-43] описан способ синтеза водорастворимого полианилина путем полимеризации анилина в мицеллярном растворе бис-натрия (2-этилгексил) сульфосукцината. В качестве окислителя применяли систему пероксидаза хрена (ПХ)/Н2О2.

Общими существенными признаками известного способа и заявляемого изобретения является обработка полианилина ПАВ.

Недостатком данного способа является многостадийный и сложный синтез с применением дорогостоящих реагентов. Кроме того, применяемое ПАВ остается в продукте, что может мешать для ряда применений полианилина.

В работе [Shao L., Qiu J., Liu M. [et al.] Synthesis and characterization of water-soluble polyaniline films // Synthetic Metals. 2011. Vol. 161. Issue 9-10. P. 806-811] растворимая в воде форма полианилина была синтезирована в две стадии. Вначале проводили полимеризацию (2-акриламидо-2-метил-пропансульфоновой кислоты в водном растворе в присутствии персульфата аммония в качестве инициатора радикальной полимеризации. Затем в полученный водный раствор полимера, растворимого в воде благодаря наличию сульфогрупп, добавляли анилин, еще персульфат аммония и проводили окислительную полимеризацию анилина. При этом получали гибридный материал, в котором полимерные цепи полианилина были соединены с полимерными цепями указанного водорастворимого полимера.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что он достаточно сложный, применяются дорогостоящие реагенты. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе заранее приготовленного полимера, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

В работе [Nakajima К., Kawabata К., Goto Н. Water soluble polyaniline/polysaccharide composite: Polymerization, carbonization to yield carbon micro-bubbles // Synthetic Metals. 2014. Vol. 194. P. 47-51] растворимая в воде форма полианилина была синтезирована путем окислительной полимеризации анилина в присутствии персульфата аммония и полисахарида - альгиновой кислоты. В этих условиях образуется комплексное вещество, в котором полимерные цепи альгиновой кислоты соединены с цепями полианилина, что и обуславливает растворимость этого вещества в воде.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что наличие в полученном композите большой массовой доли вещества другой химической природы меняет свойства полианилина. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе альгиновой кислоты, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

В работе [Li Y., Ying В., Hong L., Yang M. Water-soluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing // Synthetic Metals. 2010. Vol. 160. Issue 5-6. P. 455-461] растворимая в воде форма полианилина была синтезирована путем окислительной полимеризации анилина в присутствии персульфата аммония и полистиролсульфоновой кислоты.

Общими существенными признаками известного и заявляемого способа является обработка полианилина полимерным химическим реагентом, растворимым в воде.

Недостатком данного способа является то, что наличие в полученном композите большой массовой доли вещества другой химической природы меняет свойства полианилина. Кроме того, для синтеза данного композита необходимо проводить окислительную полимеризацию анилина в растворе полистиролсульфоновой кислоты, а не обрабатывать готовый полианилин, что усложняет технологию получения водного раствора полианилина.

Наиболее близким к заявляемому изобретению является способ получения растворимой в воде формы полианилина путем обработки полианилина в форме основания эфиром полиэтиленгликоля и фосфорной кислоты, описанный в работе [Geng Y.H., Sun Z.C., Li J. [et al.] Water soluble polyaniline and its blend films prepared by aqueous solution casting // Polymer. 1999. Vol. 40. Issue 20. P. 5723-5727]. Вначале проводили синтез указанного эфира. Для этого полиэтиленгликоль добавляли к суспензии пентоксида фосфора в бензоле, нагревали в течение определенного времени, затем отгоняли бензол. Получали смесь моно- и дигидроксилсодержащих эфиров фосфорной кислоты. Этим веществом обрабатывали полианилин (основание). В результате протонирования атомов азота полианилина протонами фосфатных групп полиэтиленгликолевые цепочки присоединялись к частицам полианилина и получалась водорастворимая форма полианилина.

Общими существенными признаками известного и заявляемого способа является обработка готового полианилина полимерным реагентом в водном растворе.

Недостатком данного способа является его сложность. Применяются реагенты, синтез которых даже в лабораторных условиях сложен. Бензол, применяемый в качестве среды, токсичен. Кроме того, присоединение к полианилину большой массовой доли вещества другой химической природы меняет свойства полианилина. Недостатком известного способа, равно как и ранее рассмотренных способов, в которых для придания полианилину растворимости применяются производные сульфокислот или сульфогруппа вводится в состав молекулы полианилина, также является то, что наличие фосфатных или сульфогрупп может мешать применению полианилина, например, в химических источниках тока, для синтеза нанокомпозиционных материалов.

В основу заявляемого изобретения поставлена задача, путем обработки заранее синтезированного полианилина полимерным реагентом другой природы, получить водорастворимую форму полианилина, устранив при этом недостатки известного способа.

Поставленная задача решается тем, что в способе получения водного раствора полианилина, включающем обработку полианилина водным раствором полимерного реагента, в качестве полимерного реагента используют смесь олигомерных соединений, содержащих кумулированные двойные углерод-углеродные связи и аминогруппы (аминокумулен) в кислом водном растворе при массовом соотношении аминокумулена к полианилину от 0,25:1 до 4:1.

Технический аминокумулен может также содержать гидроксильные группы. Наличие или отсутствие гидроксильных групп не влияет существенно на возможность реализации заявляемого изобретения.

Обработку проводят при действии ультразвука, хотя возможно применение диспергирующих устройств, работающих на других физических принципах, например роторно-импульсного аппарата, различных дезинтеграторов.

Далее приводятся данные, доказывающие возможность осуществления заявляемого изобретения.

Для осуществления изобретения применялись следующие исходные реагенты:

Гексаметилентетрамин (ГМТА), синоним уротропин, марки ЧДА.

Серная кислота, концентрированная марки ХЧ.

Олеум 65% марки ХЧ.

Безводную серную кислоту готовили путем закрепления концентрированной серной кислоты рассчитанным количеством олеума.

Полианилин в форме зеленого эмеральдина (солянокислой соли) был синтезирован по стандартной методике, описанной в [J. Stejskal. Polyaniline. Preparation of a conductive polymer (IUPAC Technical Report) // Pure Appl. Chem., 2002, vol. 74, No. 5, pp. 857-862]. Для перевода в форму основания зеленый эмеральдин обрабатывали раствором аммиака и затем отмывали аммиак водой.

Аминокумулен синтезировали согласно методике, описанной в примере 1 заявки на кумуленовое вещество, способ его получения и применение.

Синтез проводили под тягой. В 2-литровый стеклянный стакан поместили 45 мл безводной серной кислоты и небольшими порциями при перемешивании прибавили 30 г ГМТА. На первой стадии происходит растворение ГМТА (который является основанием) в серной кислоте, сопровождающееся выделением тепла. Стакан охлаждали в холодной воде, чтобы не допустить перегрева реакционной смеси выше 80°C (перегрев при недостаточном охлаждении и перемешивании может инициировать вторую экзотермическую стадию, в результате чего продукт получится неоднородным). На этой стадии реакционная смесь бесцветная и представляет собой ГМТА, в котором атомы азота протонированы серной кислотой. Стакан прикрыли алюминиевой фольгой для защиты от влаги воздуха и поставили в печь, разогретую до 120°C. Когда температура реакционной смеси, измеряемая термопарой, достигла 110°C, началась бурная экзотермическая реакция, сопровождающаяся выделением газообразного диоксида серы и образованием вязкой черной пены. Стакан извлекли из печи и после остывания до комнатной температуры добавили 200 мл воды. Продукт растворился с образованием темно-коричневого раствора. К этому раствору добавили 75 мл 25%-ного водного аммиака. Выпавший осадок отфильтровали и многократно промыли на фильтре водой, после чего высушили на воздухе при комнатной температуре до постоянной массы. Получили аминокумулен в виде черных хрупких кусочков с блестящим изломом, выход 11,96 г.

Ультразвуковую обработку проводили с помощью лабораторной ультразвуковой установки ИЛ-10.

Пример 1

В стакан емкостью 250 мл поместили 1 г аминокумулена и растворили в 30 мл 1,5-молярной уксусной кислоты. Прибавили 1 г полианилина в форме основания эмеральдина и воду до общей массы 100 г. Смесь обработали ультразвуком в течение 1 часа при 50% мощности излучателя. Стакан охлаждали в бане с холодной водой. Получили прозрачный раствор коричневого с зеленым оттенком цвета, стабильный при стоянии.

Пример 2

Повторили пример 1, но аминокумулена взяли 0,25 г. Получили прозрачный зеленый раствор, стабильный при стоянии.

Пример 3

Повторили пример 1, но аминокумулена взяли 0,5 г. Получили прозрачный зеленый с коричневым оттенком раствор, стабильный при стоянии.

Пример 4

Повторили пример 1, но аминокумулена взяли 4 г. Получили прозрачный коричневый раствор, стабильный при стоянии.

Пример 5

Повторили пример 1, но без добавки аминокумулена. Получили суспензию мелких зеленых хлопьев, которые в течение часа осели.

Таким образом, эффект растворения полианилина достигается при массовом соотношении аминокумулена к полианилину от 0,25:1 и выше. При дальнейшем увеличении количества аминокумулена эффект также достигается, однако целесообразность затраты избыточного количества амонокумулена должна быть рассмотрена в конкретном случае применения. Например, это может быть оправдано для получения композиционных пленок, содержащих полианилин в матрице аминокумулена или (после термообработки) углерода.

Следует отметить, что, в отличие от известных диспергаторов, применяемых для получения водных растворов полианилина, аминокумулен является веществом, подобным по химическому строению и свойствам к тому же полианилину. Он так же, как и полианилин, содержит аминогруппы и сопряженную систему связей, способен вступать в реакцию окислительной полимеризации. Таким образом, применяя аминокумулен для получения водных растворов полианилина, мы не вносим в систему веществ другой химической природы. Это может быть важно, если растворы полианилина применяются для синтеза различных нанокомпозитов.

Источник поступления информации: Роспатент

Showing 51-60 of 152 items.
20.01.2018
№218.016.117c

Электробаромембранный аппарат рулонного типа

Изобретение относится к мембранным аппаратам рулонного типа и может быть использовано для электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электрогиперфильтрации. Корпус аппарата изготовлен в виде цилиндрической обечайки 1, одна из торцевых поверхностей которой глухая с...
Тип: Изобретение
Номер охранного документа: 0002634010
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.190e

Способ определения действительного значения физического параметра

Изобретение относится к области медицины, а именно к диагностике. Для определения концентрации глюкозы в крови регистрируют отношения измеренных натощак значений систолического и диастолического артериальных давлений на левой и правой руках: n - минимальное систолическое к максимальному...
Тип: Изобретение
Номер охранного документа: 0002636181
Дата охранного документа: 21.11.2017
20.01.2018
№218.016.1938

Способ выбора потоконаправляющего стента

Изобретение относится к медицине, а именно к эндоваскулярной терапии. Размер потоконаправляющего стента определяют по эмпирической формуле: 0.9⋅(prox+dist)/2. Проверку доступности потоконаправляющих стентов требуемого размера производят посредством подбора наиболее близкого размера...
Тип: Изобретение
Номер охранного документа: 0002636189
Дата охранного документа: 21.11.2017
13.02.2018
№218.016.1e85

Меланжер для тонкого измельчения и перемешивания кондитерских масс

Изобретение относится к пищевой промышленности, а именно к кондитерской отрасли, и может быть применено для тонкого измельчения и перемешивания кондитерских масс. Меланжер состоит из станины, электродвигателя, преобразователя частоты приводного вала, имеющего квадрат и шлицевую часть, и...
Тип: Изобретение
Номер охранного документа: 0002641012
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.24a5

Способ стабилизации щелочного раствора пероксида водорода

Изобретение относится к неорганической химии. В водный раствор пероксида водорода последовательно добавляют компоненты в следующих количествах (моль вещества/моль пероксида водорода): сульфат магния (MgSO) - 0,0008÷0,0035; ортоборная кислота (HBO) - 0,0008÷0,0035. Ортоборную кислоту вводят в...
Тип: Изобретение
Номер охранного документа: 0002642571
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.25d8

Неинвазивный экспресс-анализ концентрации глюкозы в крови

Изобретение относится к области медицины, а именно к эндокринологии. Для экспресс-анализа концентрации глюкозы крови накладывают термисторы над поверхностной веной головы испытуемого и измеряют натощак и после приема пищи температуру и концентрацию глюкозы в крови. Определяют концентрацию...
Тип: Изобретение
Номер охранного документа: 0002644298
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2600

Осциллографический способ измерения артериального давления

Изобретение относится к области медицины, а именно к физиологии и кардиологии. Для измерения артериального давления регистрируют и проводят анализ осциллограмм артерий в частотах от 0 Гц до 60 Гц с последующим электрическим преобразованием. Компрессию пережимной измерительной манжеты продолжают...
Тип: Изобретение
Номер охранного документа: 0002644299
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2b9a

Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности....
Тип: Изобретение
Номер охранного документа: 0002643174
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2cfe

Устройство для испытания дыхательного аппарата

Изобретение относится к устройствам для испытаний дыхательных аппаратов. Устройство для испытания дыхательного аппарата содержит блок имитации дыхания 1, блок подачи диоксида углерода и азота 2, блок имитации потребления кислорода 3 и блок управления 4. Блок имитации дыхания 1 содержит...
Тип: Изобретение
Номер охранного документа: 0002643670
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.2f2d

Сушилка для пастообразных материалов на инертных телах

Изобретение относится к области химической промышленности и служит для сушки высоковлажных пастообразных материалов. Сушилка для пастообразных материалов содержит биконическую камеру взвешенного слоя 1, сепарационную камеру 2, фильерное устройство для ввода влажного материала 3, закрученный...
Тип: Изобретение
Номер охранного документа: 0002644655
Дата охранного документа: 13.02.2018
Showing 51-60 of 79 items.
11.06.2018
№218.016.6176

Сушильная установка с тепловыми аккумуляторами для растительных материалов

Изобретение относится к области сушки растительных материалов, в частности к вакуумным сушилкам периодического действия, и может быть использовано, в частности, для сушки пищевых продуктов, а именно овощей, грибов, фруктов, зелени и др. Сушильная установка с тепловыми аккумуляторами для...
Тип: Изобретение
Номер охранного документа: 0002657067
Дата охранного документа: 09.06.2018
16.06.2018
№218.016.62bb

Способ получения графена

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды. Полученное интеркалированное соединение графит выдерживают до его расширения. Затем гидролизуют, промывают водой...
Тип: Изобретение
Номер охранного документа: 0002657504
Дата охранного документа: 14.06.2018
01.07.2018
№218.016.69af

Сорбент на основе модифицированного оксида графена и способ его получения

Группа изобретений относится к получению сорбентов и может быть использована для очистки сточных вод от красителей и солей тяжелых металлов. Сорбент представляет собой оксид графена, модифицированный полигидрохиноном. Способ получения сорбента включает смешение под воздействием ультразвука...
Тип: Изобретение
Номер охранного документа: 0002659285
Дата охранного документа: 29.06.2018
21.07.2018
№218.016.73ac

Кумуленовое вещество, способ его получения и применение

Изобретение относится к новому кумуленовому веществу, содержащему цепочку кумулированных двойных углерод-углеродных связей и аминогруппы в качестве «концевых групп», а также возможно гидроксильные группы, полученному новым способом, указанным ниже. Кумуленовое вещество может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002661876
Дата охранного документа: 20.07.2018
28.07.2018
№218.016.7700

Радиопоглощающее покрытие на текстильных материалах

Изобретение относится к материалам, предназначенным для защиты от электромагнитного излучения электронных устройств, специальной техники и персонала. Техническим результатом изобретения является обеспечение высокой устойчивости покрытия к физико-химическим воздействиям, возможности получения...
Тип: Изобретение
Номер охранного документа: 0002662701
Дата охранного документа: 26.07.2018
25.10.2018
№218.016.9561

Стержневая барабанная мельница

Изобретение относится к устройствам для сухого или мокрого измельчения минерального сырья и полуфабрикатов, преимущественно имеющих слоистую структуру, таких как графит и дисульфид молибдена, в химической промышленности и других производствах. Мельница содержит вращающийся барабан, частично...
Тип: Изобретение
Номер охранного документа: 0002670495
Дата охранного документа: 23.10.2018
23.11.2018
№218.016.a06d

Теплоаккумулирующее устройство

Теплоаккумулирующее устройство относится к области теплотехники, более конкретно к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения комфортных условий дыхания при использовании изолирующих дыхательных аппаратов на химически...
Тип: Изобретение
Номер охранного документа: 0002673037
Дата охранного документа: 21.11.2018
16.01.2019
№219.016.b05b

Композиция для получения электропроводящего гидрофобного покрытия на основе лака с углеродными нанотрубками и способ ее изготовления

Изобретение относится к электропроводящему гидрофобному покрытию на основе лака с углеродными нанотрубками (УНТ) и способу его изготовления. Покрытие предназначено главным образом для полимерных изделий. Электропроводящее гидрофобное покрытие включает, мас.ч.: пленкообразующий сополимер -...
Тип: Изобретение
Номер охранного документа: 0002677156
Дата охранного документа: 15.01.2019
31.01.2019
№219.016.b596

Применение композиции, включающей минеральное моторное масло или индустриальное масло, суспензию наноматериала (унм) и поверхностно-активное вещество (пав) для маркировки нефтепродукта, и способ идентификации продукта

Изобретение раскрывает применение композиции, включающей минеральное моторное масло или индустриальное масло, суспензию углеродного наноматериала (УНМ), представляющего собой «Таунит-М», и поверхностно-активное вещество (ПАВ) для маркировки нефтепродуктов, представляющих собой горюче-смазочные...
Тип: Изобретение
Номер охранного документа: 0002678457
Дата охранного документа: 29.01.2019
09.02.2019
№219.016.b89a

Способ получения теплопоглощающего материала

Изобретение относится к аккумулированию тепловой энергии для оптимизации температуры поверхности тела человека в экстремальных условиях, снижению температуры на вдохе в средствах индивидуальной защиты органов дыхания, работающих на химически связанном кислороде, а также в средствах...
Тип: Изобретение
Номер охранного документа: 0002679388
Дата охранного документа: 07.02.2019
+ добавить свой РИД