×
20.01.2018
218.016.1dc6

Результат интеллектуальной деятельности: Трехслойная ресурсосберегающая железобетонная панель

Вид РИД

Изобретение

Аннотация: Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Трехслойная ресурсоберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненными в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели. Дополнительно снабжена, по меньшей мере, двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели. Теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков. При этом на внешней стороне армированных бетонных шпонок, проходящих через теплоизоляционный слой, выполнены количеством не менее двух попарно расположенные криволинейные канавки в виде синусоид, продольно вытянутых от одного торца к противоположному. Участки наибольшего сближения попарно расположенных криволинейных канавок составляют узлы, вызывающие образование поперечных стоячих волн. Технический результат состоит в поддержании нормированных параметров надежной эксплуатации трехслойной энергосберегающей железобетонной панели при изменяющихся погодно-климатических и вибрационных воздействиях, за счет снижения концентрационного перемещения продольных температурных напряжений и сейсмических волн, путем выполнения на внешней поверхности армированных бетонных шпонок, проходящих через изоляционный слой, криволинейных канавок количеством не менее двух в виде продольно вытянутых синусоид, которые в местах наибольшего сближения между собой создают узлы, способствующие образованию поперечных стоячих волн, приводящих к частичному как смещению вибрационного воздействия, так и перемещению температурных напряжений в панелях. 3 ил.

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий.

Известна трехслойная железобетонная панель (см. патент РФ №2398078 МПК Е04С 2/06, опубл.27.08.2010), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненными в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена, по меньшей мере, двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. При этом коэффициент теплопроводности материала бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели.

Недостатком являются потери тепла через теплоизоляционный слой при суточном изменении температуры воздуха окружающей среды, особенно при ее отрицательных значениях и наличии солнечной радиации.

Известна трехслойная ресурсосберегающая железобетонная панель (см. патент РФ №2558874, МПК Е 04С2/06, опубл. 10.08.2015, бюл.№22), включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена, по меньшей мере, двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков.

Недостатком является снижение эксплуатационной надежности при изменяющихся погодно-климатических условиях и особенно в совокупности с вибрационными воздействиями, обусловленных спецификой эксплуатации производственных помещений, например пульсирующие нагрузки на грунт (перемещающийся транспорт, прессы, станки, расположенные в здании), когда сейсмические волны беспрепятственно перемещаются, наряду с температурными напряжениями от одного торца армированной бетонной шпонки, проходящей через изоляционный слой к противоположному торцу, что способствует разрушению ни только самой шпонки, но и панели в целом.

Технической задачей предлагаемого изобретения является поддержание нормированных параметров надежной эксплуатации трехслойной энергосберегающей железобетонной панели при изменяющихся погодно-климатических и вибрационных воздействиях за счет снижения концентрационного перемещения продольных температурных напряжений и сейсмических волн путем выполнения на внешней поверхности армированных бетонных шпонок, проходящих через изоляционный слой, криволинейных канавок количеством не менее двух в виде продольно вытянутых синусоид, которые в местах наибольшего сближения между собой, создают узлы, способствующие образованию поперечных стоячих волн, приводящих к частичному как смещению вибрационного воздействия, так и перемещению температурных напряжений в панелях.

Технический результат по поддержанию надежностных параметров при длительной эксплуатации в условиях погодно-климатических и вибрационных воздействиях достигается тем, что трехслойная ресурсосберегающая железобетонная панель включает теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена, по меньшей мере, двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, при этом на внешней стороне армированных бетонных шпонок, проходящих через теплоизоляционный слой, выполнены количеством не менее двух и/или попарно криволинейные канавки в виде синусоид, продольно вытянутых от одного торца к противоположному, причем участки наибольшего сближения попарно расположенных криволинейных канавок составляют узлы, вызывающие образование поперечных стоячих волн.

На фиг. 1 изображен общий вид трехслойной железобетонной панели с частичными разрезами, на фиг. 2 - распределение температурных и тепловых полей в зонах контакта шпонок как в торце панели, так и в теплоизоляционном слое панели, на фиг.3 - внешняя поверхность армированной бетонной шпонки с парой криволинейных канавок в виде синусоид и узлами, вызывающими образование поперечных стоячих волн.

Трехслойная железобетонная панель включает наружный 1 и внутренний 2 железобетонные слои и средний теплоизоляционный слой 3. Наружный 1 и внутренний 2 железобетонные слои связаны жесткими связями, выполненными в виде армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, и армированных бетонных шпонок 5, которые размещены на противоположных торцах панели. Общее количество армированных бетонных шпонок 4 и 5 определяют расчетным путем, при этом количество шпонок 5 должно быть не менее двух. Наружный 1 и внутренний 2 железобетонные слои также связаны армированными бетонными ребрами 6, которые имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи. Ребра 6 размещены по всему периметру панели и герметизируют пространство между слоями 1 и 2, тем самым обеспечивая защиту теплоизоляционного слоя 3 от механических повреждений и атмосферного воздействия во время хранения, транспортировки и монтажа панели. При этом материал армированных бетонных шпонок 4, проходящих через теплоизоляционный слой 3, имеет коэффициент теплопроводности, в 2,5-3 раза превышающий коэффициент теплопроводности армированных бетонных шпонок 5, размещенных на противоположных торцах панели. Теплоизоляционный слой 3 выполнен из тонковолокнистого базальтового материала 7 и расположен в виде витых продольно вытянутых по длине панели пучков 8. На внешней стороне 9 армированной бетонной шпонки 4, проходящей через теплоизоляционный слой 3, выполнены количеством не менее двух криволинейные канавки 10 в виде синусоид, продольно вытянутых от одного торца 11 к противоположному торцу 12. Участки наибольшего сближения попарно расположенных криволинейных канавок 10 составляют узлы 13, вызывающие образование стоячих волн 14.

Поддержание надежностных свойств предлагаемой трехслойной ресурсосберегающей железобетонной панели в условиях эксплуатации при изменяющихся погодно-климатических и вибрационных воздействиях проявляются следующим образом.

Жесткая связь наружного 1 и внутреннего 2 железобетонных слоев армированными бетонными шпонками 4, проходящими через теплоизоляционный слой 3 , приводит к тому, что наружная среда является переменной величиной по теплообменным свойствам. При этом в области контакта армированной бетонной шпонки 4 с наружным 1 и внутренним 2 железобетонными слоями теплота, передаваемая теплопроводностью (коэффициент теплопроводности железобетона λ=1,69 Вт/(м⋅K)), имеет значение значительно ниже чем в области контакта армированной бетонной шпонки 4 с теплозащитным слоем 3, выполненного из тонковолокнистого материала (коэффициент теплопроводности λ=0,04÷0,072 Вт/(м⋅K)). В результате на границах перехода наружного железобетонного слоя 1 и теплоизоляционного слоя 3, а также на границе перехода теплоизоляционного слоя 3 и внутреннего 2 железобетонного слоя возникают из-за нестационарной теплопроводности термоупругие напряжения (см., например, стр.136. Цой П.В. Методы расчета отдельных задач тепломассопереноса. М.: Энергия; 1971-384 с., ил.). Термоупругие напряжения, перемещаясь от одного торца 11 к другому торцу 12, приводят к расслоению компонентов входящих как в армированную бетонную шпонку 4, так и в зоне контакта в трехслойную ресурсосберегающую железобетонную панель.

Если одновременно с термоупругими напряжениями на трехслойную ресурсосберегающую железобетонную панель воздействуют вибрационные нагрузки, то сейсмические волны, перемещаясь вдоль длины армированной бетонной шпонки 4, дополнительно усиливают термоупругие напряжения, что приводит к интенсификации разрушения панели в целом. Расположение криволинейных канавок 10 на внешней поверхности 9 армированной бетонной шпонки 4 в виде продольно вытянутых синусоид приводит к наличию участков 13 наибольшего их сближения для попарно находящихся рядом полостей 15 с концентрированными сейсмическими волнами 16, т.е. создаются узлы 17, вызывающие образование стоячих волн 18 (см., например, Ландау Л.О., Лифшиц Е.М. Теоретическая физика, 1986, 836 с., ил.), перпендикулярно распространяющихся с одинаковой частотой под действием вибрации.

В результате того что на пути продольно перемещающихся сейсмических волн 16 от одного торца 11 к другому торцу 12 по внешней поверхности 9 армированной бетонной шпонки 4 находятся узлы 13, способствующие образованию стоячих поперечных волн 18, наблюдается практически полное гашение вибрационного воздействия и частичное гашение термоупругих напряжений, следовательно, устраняется расслоение компонентов элемента строительной конструкции в виде как армированной бетонной шпонки 4 , так и в целом трехслойной ресурсосберегающей железобетонной панели.

Ресурсосберегающие свойства предлагаемой железобетонной панели по изобретению в условиях эксплуатации при изменяющихся температурных воздействиях окружающей среды проявляются следующим образом.

Воздействие суточных изменений температуры воздуха окружающей здание среды приводит к циклическому воздействию тепловых потоков от наружного 1 и внутреннего 2 слоев к теплоизоляционному слою 3, при этом теплоизоляционный слой 3, выполняя основную функцию устранения прохождения теплового потока, препятствует передаче тепла как от внутреннего 2 слоя к наружному 1 слою, так и, наоборот, включая наличие более высокой температуры, например, под воздействием солнечной радиации, поверхности наружного слоя 1 по сравнению с внутренней поверхностью внутреннего слоя 2 слоя отапливаемого помещения при отрицательных температурах воздуха окружающей среды. Следовательно, энергоемкость отапливаемого здания обусловлена максимально необходимыми ресурсозатратами на высокотемпературный энергоноситель системы отопления, поддерживающий расчетные параметры микроклимата в помещении по условию тепловых потерь через наружные ограждения - трехслойные железобетонные панели (см., например, СНиП 2.04.05-91 Отопление, вентиляция, кондиционирование воздуха. М.: Стройиздат, 1997).

Для снижения ресурсозатрат на производство, транспортировку и потребление высокотемпературного (90-150°С) теплоносителя, используемого в системе отопления здания (см., например, СНиП 2.04.07-86 Тепловые сети. М.: Стройиздат, 1987 (с изм. от 21.04.94 г.)), теплоизоляционный слой 3 выполнен из тонковолокнистого базальтового материала 7, расположенного в виде витых продольно вытянутых по длине панели пучков 8. Тогда в светлое время суток при наличии солнечной радиации с отрицательными температурами воздуха окружающей среды поверхность наружного 1 слоя теплопроводностью передает тепло тонковолокнистому базальтовому материалу 7 теплоизоляционного слоя 3, а в связи с тем что тонковолокнистый базальтовый материал 7 расположен в виде витых продольно вытянутых по длине панели пучков 8, наблюдается аккумулирование тепловой энергии по толщине теплоизоляционного слоя 3 (см., например, волокнистые материалы из базальтов. Украина, изд. «Техника» Киев, 1971-76 с ил.).

При отсутствии солнечной радиации и/или в темное время суток саккумулированная в теплоизоляционном слое 3 теплота переходит через внутренний 2 слой в отапливаемое помещение, поддерживая параметры микроклимата в нем, что позволяет снизить расход высокотемпературного теплоносителя системы отопления.

В дневное время суток при отопительном периоде эксплуатации здания тепловая энергия от теплообменного аппарата, преимущественно расположенного у наружного ограждения, например, из трехслойных железобетонных панелей наряду с прогревом внутреннего воздуха теплопроводностью передается внутреннему слою 2 и далее теплоизоляционному слою 3, где аккумулируется на витых продольно вытянутых пучках 8 тонковолокнистого базальтового материала 7, практически устраняя поступление теплового потока в наружный слой 1.

Накопленная путем аккумулирования в теплоизоляционном слое 3 тепловая энергия в наступающее ночное время суток, когда допускается уменьшение нормированной температуры внутреннего воздуха за счет снижения расхода высокотемпературного теплоносителя системы отопления, особенно в офисах и производственных зданиях из-за сокращения наличия людей или их полного отсутствия, теплопроводностью передается через внутренний слой 2 в помещение. В результате обеспечивается ресурсосберегающая эксплуатация здания. Следовательно, выполнение теплоизоляционного слоя 2 из тонковолокнистого базальтового материала 7 в виде витых продольно вытянутых пучков 8 обеспечивает не только защиту от тепловых потерь, но и поддержание нормированного температурного режима в здании за счет отдачи тепла, которое было аккумулировано и в последующем передано внутреннему воздуху отапливаемого помещения.

При отрицательных температурах окружающей среды армированные бетонные ребра определенной толщины представляют собой дополнительные «мостики холода», а устранение данного явления путем уменьшения толщин армированных бетонных ребер по периметру панели (по прототипу), конечно, снижает теплопотери. Но не всегда оправдано по прочности параметрам конструкции.

Выполнение армированных бетонных шпонок, размещенных на противоположных торцах панели из материала с коэффициентом теплопроводности, в 2,5-3 раза меньшим, чем коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, приводит к местному перераспределению температурных и тепловых полей в местах контакта бетонных шпонок с основным материалом трехслойной панели. Температурное поле внешней окружающей среды с минусовой температурой воздействует на армированную бетонную шпонку на торце панели и температурное поле внутренней с минусовой температурой окружающей среды (например, расположение панели как перекрытия здания) с градиентом температур различной (до трехкратной) интенсивности, обусловленной теплопроводностью соответствующих материалов. В результате в месте контакта (фиг. 1) для торца панели, где возможно появление «мостиков холода», образуется температурно-тепловой пограничный слой (см., например, стр.68-77. Исаченко В.П. и др. Теплопередача. М.: Энергоиздат, 1981, 416 с., ил.), обусловленный встречным направлением градиентов температур (grad t) внешней окружающей среды и теплового потока рассеивания (gрас), определяющих тепловые потери панели от внутренней окружающей среды, например тепла помещения при использовании панели в качестве перекрытия здания. При этом толщина температурно-теплового пограничного слоя увеличивается при периодическом в течение суток разном изменении температуры воздуха окружающей среды от минусовых до нулевых и даже плюсовых. В то же время в месте контакта армированных бетонных шпонок, проходящих через теплоизоляционный слой, также образуется температурно-тепловой пограничный слой, обеспечивающий рассеивание теплового потока, определяющего тепловые потери как по внешнему и внутреннему железобетонному слою, так и теплоизоляционному слою, но со значением температурных градиентов, трехкратно меньшим, чем для наружных условий.

В результате наличия местных зон (армирование бетонных шпонок на торцах панели и в теплоизоляционном слое) перераспределение температурных и тепловых полей обеспечивает повышение теплотехнических свойств трехслойной ресурсосберегающей железобетонной панели в целом.

Оригинальность предлагаемого изобретения заключается в том, что выполнение на внешней стороне армированной бетонной шпонки криволинейных канавок количеством не менее двух и/или попарно расположенных в виде продольно вытянутых синусоид обеспечивает поддержание нормированных прочностных параметров трехслойной ресурсосберегающей железобетонной панели при длительной эксплуатации в изменяющихся погодно-климатических условиях и вибрационных воздействиях за счет создания участков наибольшего сближения продольно перемещающихся термоупругих напряжений и сейсмических волн, в которых образуются узлы, вызывающие появление стоячих волн, их гасящие.

Трехслойная ресурсоберегающая железобетонная панель, включающая теплоизоляционный слой, наружный и внутренний железобетонные слои, связанные между собой жесткими связями, выполненные в виде армированных бетонных шпонок, проходящих через теплоизоляционный слой, и армированные бетонные ребра, размещенные по периметру панели, дополнительно снабжена, по меньшей мере, двумя армированными бетонными шпонками, которые размещены на противоположных торцах панели, а армированные бетонные ребра в сечении, параллельном слоям панели, имеют площадь, определяемую из соотношения площади панели, толщины ее среднего слоя, коэффициентов теплопроводности материалов ребер, слоев панели, арматуры и утеплителя, а также требуемого сопротивления теплопередачи, при этом коэффициент теплопроводности материала армированных бетонных шпонок, проходящих через теплоизоляционный слой, в 2,5-3 раза превышает коэффициент теплопроводности материала армированных бетонных шпонок, размещенных на противоположных торцах панели, причем теплоизоляционный слой выполнен из тонковолокнистого материала и расположен в виде витых продольно вытянутых по длине панели пучков, отличающаяся тем, что на внешней стороне армированных бетонных шпонок, проходящих через теплоизоляционный слой, выполнены количеством не менее двух попарно расположенные криволинейные канавки в виде синусоид, продольно вытянутых от одного торца к противоположному, причем участки наибольшего сближения попарно расположенных криволинейных канавок составляют узлы, вызывающие образование поперечных стоячих волн.
Трехслойная ресурсосберегающая железобетонная панель
Трехслойная ресурсосберегающая железобетонная панель
Источник поступления информации: Роспатент

Showing 161-170 of 422 items.
25.08.2017
№217.015.bafd

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими...
Тип: Изобретение
Номер охранного документа: 0002615878
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bd08

Универсальный регенеративный роторный воздухоподогреватель

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Универсальный регенеративный роторный воздухоподогреватель содержит короб, снабженный с верхней горячей стороны газового отсека патрубком входа дымовых газов, с холодной...
Тип: Изобретение
Номер охранного документа: 0002616430
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c60d

Двухзвенный вездеход

Изобретение относится к транспортному машиностроению, в частности к транспортным средствам. Двухзвенный вездеход содержит два герметичных звена, оснащенных гусеничными движителями, торсионной независимой подвеской и грузовым отсеком, первым и вторым герметичными звеньями, связанными между собой...
Тип: Изобретение
Номер охранного документа: 0002618615
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.ce01

Устройство для смешения

Изобретение относится к устройствам для смешения жидких материалов и может быть использовано в химической, пищевой, микробиологической и других отраслях промышленности, а также при водоподготовке для очистки природных и сточных вод. Устройство для смешения содержит корпус с крышкой, днищем и...
Тип: Изобретение
Номер охранного документа: 0002620796
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce96

Устройство для очистки и комплексной утилизации сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано в процессах очистки и утилизации сбросных газов теплоэнергетических установок и двигателей внутреннего сгорания для снижения загрязнений, выбросов парниковых газов в атмосферу и повышения...
Тип: Изобретение
Номер охранного документа: 0002620798
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec0

Гидроклассификатор

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его...
Тип: Изобретение
Номер охранного документа: 0002620819
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ced9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого...
Тип: Изобретение
Номер охранного документа: 0002620821
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d09f

Трехслойная ресурсосберегающая железобетонная панель

Изобретение относится к строительству, в частности к ограждающим конструкциям промышленных зданий. Технический результат: поддержание заданной надежной эксплуатации трехслойной ресурсосберегающей железобетонной панели при землетрясениях за счет резонансных всплесков сейсмических волн в...
Тип: Изобретение
Номер охранного документа: 0002621240
Дата охранного документа: 01.06.2017
Showing 161-170 of 235 items.
19.01.2018
№218.016.09b0

Самоочищающийся кожухотрубный теплообменник

Изобретение относится к теплоэнергетике и может быть использовано для нагрева и охлаждения газов и жидкостей в различных отраслях народного хозяйства. В самоочищающемся кожухотрубном теплообменнике, содержащем кожух, в котором размещен пучок труб, соединенных с трубными решетками, и патрубки...
Тип: Изобретение
Номер охранного документа: 0002631963
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.0e8c

Устройство для напорного перемещения газа или жидкости

Изобретение относится к области производства осевых вентиляторов и насосов для перемещения особо чистых газообразных и жидких сред. Устройство для напорного перемещения газа или жидкости содержит кожух, лопаточное колесо, двигатель, расположенный вне перемещаемой среды. Колесо снабжено...
Тип: Изобретение
Номер охранного документа: 0002633500
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0ff5

Воздухоочищающее вентилируемое ограждение здания

Изобретение относится к строительству и может быть использовано при изготовлении вентилируемых стеновых ограждений, позволяющих утилизировать тепло наружного воздуха и тепловые потери здания в летний и зимний периоды и одновременно очищать уличный воздух от вредных примесей. Технический...
Тип: Изобретение
Номер охранного документа: 0002633621
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.121f

Устройство для поиска минимального значения интенсивности размещения в полносвязных матричных системах при двунаправленной передаче информации

Изобретение относится к области моделирования комбинаторных задач при проектировании вычислительных систем (ВС). Технической результат заключается в расширении области применения устройства за счет введения средств для поиска минимального значения интенсивности размещения в полносвязных...
Тип: Изобретение
Номер охранного документа: 0002634198
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.126a

Устройство для ускоренного вычисления матрицы неполного параллелизма

Изобретение относится к области цифровой вычислительной техники и предназначено для ускоренного вычисления матрицы неполного параллелизма при распараллеливании линейных участков последовательных программ для вычислительных систем. Технический результат заключается в увеличении быстродействия...
Тип: Изобретение
Номер охранного документа: 0002634200
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1280

Параллельный логический мультиконтроллер

Изобретение относится к построению коммутационных средств мультипроцессорных вычислительных и управляющих систем, абонентских систем связи с децентрализованным управлением и информационно-измерительных систем. Технический результат заключается в повышении скорости выполнения барьерной...
Тип: Изобретение
Номер охранного документа: 0002634199
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1397

Способ изготовления аккумулятора свинцово-кислотной системы с поверхностными электродами

Изобретение относится к химическим источникам тока, а именно к производству свинцово-кислотных аккумуляторов различных назначений: тяговых, стационарных, стартерных, и может быть использовано в автомобильном, железнодорожном, водном транспорте, электрических подстанциях, где требуются...
Тип: Изобретение
Номер охранного документа: 0002634591
Дата охранного документа: 01.11.2017
20.01.2018
№218.016.17d5

Способ получения антибактериальной композиции, содержащей основной ацетат меди

Изобретение относится к технологии получения противоожоговых и ранозаживляющих лекарственных средств и может быть использовано в медицинской практике. Предлагается способ получения антибактериальной композиции, включающей основный ацетат меди, смешением растворов ацетата меди с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002635505
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.191a

Способ деперсонализации персональных данных

Изобретение относится к области защиты информации, хранимой в информационных системах персональных данных (ИСПДн), от несанкционированного доступа (НСД) и может быть использовано на стадиях разработки и оптимизации ИСПДн в защищенном исполнении. Техническим результатом является повышение уровня...
Тип: Изобретение
Номер охранного документа: 0002636106
Дата охранного документа: 20.11.2017
13.02.2018
№218.016.204b

Мельница

Изобретение относится к бытовой и промышленной технике и может быть использовано для размола пищевых продуктов (кофе, зерна, травяного лекарственного и технического сырья), а также в промышленности и, в частности, для получения нанопорошков. Мельница содержит электродвигатель и систему размола,...
Тип: Изобретение
Номер охранного документа: 0002641577
Дата охранного документа: 18.01.2018
+ добавить свой РИД