×
20.01.2018
218.016.1b97

Результат интеллектуальной деятельности: Способ получения конструкционно-теплоизоляционного материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и направлено на повышение эффективности теплоизоляционных характеристик и срока эксплуатации конструкционно-теплоизоляционного материала, используемого для обеспечения тепловой защиты передового энергетического оборудования. Cпособ получения конструкционно-теплоизоляционного материала включает подготовку формовочной смеси, формование, полимеризацию и термообработку, выдержку и остывание. При этом подготовку формовочной смеси проводят в три этапа. На первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения. На втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы. На третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, затем осуществляют формование путем кратковременной виброусадки и постепенного прессования смеси при давлении пуансона 1,5 МПа. Далее проводят полимеризацию при комнатной температуре в течение 12 ч, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 ч при следующих температурных режимах: первые 4 ч - при температуре 100-150°С, следующие 4 ч - при температуре 250°С, последующие 4-5 ч - при температуре 400-500°С, оставшееся время - при температуре 700°С. Выдержку проводят при температуре 700°С в течение 4 ч и остывание в печи - в течение 4-5 ч. Причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер составляет 1:6. Технический результат – повышение эффективности теплоизоляционных характеристик и срока эксплуатации материала, а именно теплопроводность составляет 0,089 Вт/(м⋅К), прочность на сжатие – 0,75 МПа, плотность – 0,25 г/см. 1 ил., 1 табл.

Изобретение относится к области теплотехники и может быть использовано для получения легковесного огнеупорного теплоизоляционного материала с целью обеспечения тепловой защиты передового энергетического оборудования.

Известен способ изготовления конструктивно-теплоизоляционной строительной керамики (патент № RU 2379258, опубл. 20.01.2010, МПК С04В 35/16), включающий подготовку минеральной связующей добавки, увлажнение и пластификацию зольного компонента, смешивание связующей добавки с пластифицированным зольным компонентом, полусухое прессование изделий и обжиг. При этом пластифицирующую добавку готовят по шликерному способу совместным мокрым помолом цеолитовой породы с лингосульфонатом кальция в шаровой мельнице до остатка на сите 0088 не более 2-3%, осуществляют пластификацию смешиванием зольных микросфер с полученным цеолитлигносульфонатным шликером с последующим введением сухой минеральной связующей добавки в виде цеолитовой породы, высушенной при температуре 110-150°С и измельченной до размеров частиц менее 0,5 мм, формование изделий из полученной сырьевой смеси осуществляют полусухим прессованием под давлением 20-25 МПа, а обжиг проводят при температуре 980±20°С.

Недостатком настоящего изобретения является сложность изготовления конструктивно-теплоизоляционной керамики и высокая плотность материала, полученного настоящим способом.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер (Патент №2455253, опубл. 10.07.2012, МПК С04В 28/26), включающий перемешивание алюмосиликатных микросфер и вяжущего - жидкого стекла, формование, термообработку, выдержку, остывание, где в качестве наполнителя используют жидкое стекло натриевое и/или калиевое, осуществляют формование с удельной нагрузкой 1,5-5 МПа, термообработку, включающую: I этап термоудара - путем повышения температуры до 100-130°С за 7-15 мин, выдержку - при 100-130°С 7-15 мин, II этап термоудара - путем подъема температуры до 300-550°С в течение 10-30 мин, выдержку - 40-80 мин и остывание в печи в течение 5-8 ч.

Недостатком настоящего технического решения является высокая плотность и теплопроводность теплоизоляционного материала, полученного указанным способом, а также его низкая прочность.

Технической задачей предлагаемого изобретения является повышение механической прочности и снижение теплопроводности конструкционно-теплоизоляционного материала.

Технический результат заключается в повышении эффективности теплоизоляционных характеристик и срока эксплуатации материала, полученного предлагаемым способом.

Это достигается тем, что в известном способе получения конструкционно-теплоизоляционного материала, включающем подготовку формовочной смеси, формование и термообработку, выдержку и остывание, дополнительно проводят полимеризацию, при этом подготовку формовочной смеси проводят в три этапа, на первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения, на втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы, на третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, затем осуществляют формование путем кратковременной виброусадки и постепенного прессования смеси при давлении пуансона 1,5 МПа, далее проводят полимеризацию при комнатной температуре в течение 12 часов, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 часов, выдержку проводят при температуре 700°С в течение 4 часов и остывание в печи - в течение 4-5 часов, причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а их общий объем по отношению к алюмосиликатным микросферам составляет 1:6.

Реализация предлагаемого способа получения конструкционно-теплоизоляционного материала осуществляется следующим образом.

На первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения с помощью планетарного смесителя. Полученную смесь выгружают из смесителя и помещают в закрытую емкость, препятствующую поступлению воздуха для исключения высыхания смеси. На втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы. При этом на первом и втором этапах используется одинаковое количество микросфер. На третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй с постепенным увеличением скорости вращения смесителя.

Полученную формовочную смесь загружают в матрицу вибропресса и проводят ее виброусадку путем кратковременного включения вибромотора пресса. Далее проводят прессование смеси с вибрацией в течение 5-7 секунд при давлении пуансона 1,5 МПа. Это обеспечивает оптимальную плотность паковки микросферы в полимерной фазе. После прессования поднимают матрицу и пуансон и извлекают заготовку. Затем заготовку оставляют при комнатной температуре на 12 часов для прохождения процесса полимеризации карбамидфурановой смолы.

После этого заготовку помещают в камерную печь и проводят термообработку в кислородной среде со ступенчатым нагревом до 700°С в течение 16 часов. При этом в первые 4 часа при температуре 100-150°С происходит дополимеризация карбамидфурановой смолы с образованием пространственно-сшитого полимера, в следующие 4 часа при температуре 250°С происходит испарение воды и разложение кристаллогидратов в алюмохромфосфатном связующем. В последующие 4-5 часов при температуре 400-500°С начинается реакция термоотверждения алюмохромфосфатного связующего с образованием полифосфатов и оксидов металлов и окончательным удалением кристаллизационной воды, и при этой же температуре начинается карбонизация карбамидфурановой смолы. Оставшееся время идет на окончательную карбонизацию карбамидфурановой смолы с образованием углеродной структуры при температуре 700°С. При этом из алюмохромфосфатного связующего выделяются кристаллы пирофосфата алюминия.

Далее проводят выдержку заготовок при 700°С в течение 4 часов для окончательного удаления углерода из объема материала, который вступает в реакцию с кислородом и выделяется в виде углекислого газа. По окончании процесса термоотверждения печь выключают и оставляют в ней заготовки для плавного остывания в течение 4-5 часов во избежание раскола материала из-за резкого снижения температуры.

Опытным путем было доказано, что при использовании в качестве дисперсного наполнителя алюмосиликатных микросфер диаметром не ниже 100 мкм полученный материал обладает высокими прочностными характеристиками и в процессе обжига при высоких температурах не разрушается. Кроме того, материал имеет предел прочности при изостатическом сжатии 0,5 МПа, что важно в условиях получения материалов методом прессования, поскольку в случае использования более легкой и соответственно хрупкой микросферы велика вероятность разрушения большей ее части при проведении процесса прессования и, как следствие, резкое снижение прочностных и теплофизических параметров.

Полученный предлагаемым способом конструкционно-теплоизоляционный материал прост в изготовлении и обладает следующими характеристиками: теплопроводность составляет 0,089 Вт/(м⋅К), прочность на сжатие - 0,75 МПа, плотность - 0,25 г/см3.

В ходе экспериментов, результаты которых представлены в Таблице 1, было установлено, что с точки зрения соотношения прочностных характеристик и теплопроводности оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер - 1:6.

Конкретным примером реализации предлагаемого способа является создание теплоизоляционных изделий с замками типа шип-паз, применяемых для обмуровки энергетического оборудования. Пример поясняется чертежом, на котором изображено теплоизоляционное изделие 1 размером 200×300×70 мм, выполненное в форме прямоугольного параллелепипеда с замками типа шип 2, 4 - паз 3, 5. Такая форма изделия упрощает монтаж, снижает потери в области тепловых мостиков, а также повышает общую прочность материала. Данные изделия эксплуатируют в диапазоне температур от 0 до 700°С.

Использование изобретения позволяет обеспечить эффективную тепловую защиту оборудования при повышенных температурах за счет низкой теплопроводности материала, полученного предложенным способом, а также повысить срок эксплуатации конструкционно-теплоизоляционного материала.

Способ получения конструкционно-теплоизоляционного материала, включающий подготовку формовочной смеси, формование и термообработку, выдержку и остывание, отличающийся тем, что дополнительно проводят полимеризацию, при этом подготовку формовочной смеси проводят в три этапа, на первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения, на втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы, на третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, причем используют алюмосиликатные микросферы диаметром не ниже 100 мкм и при этом на первом и втором этапах подготовки формовочной смеси используют одинаковое количество микросфер, формование полученной смеси осуществляют в матрице вибропресса, где проводят ее виброусадку путем кратковременного включения вибромотора пресса и далее проводят прессование смеси с вибрацией в течение 5-7 с при давлении пуансона 1,5 МПа, проводят полимеризацию при комнатной температуре в течение 12 ч, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 ч при следующих температурных режимах: первые 4 ч - при температуре 100-150°С, следующие 4 ч - при температуре 250°С, последующие 4-5 ч - при температуре 400-500°С, оставшееся время - при температуре 700°С, выдержку проводят при 700°С в течение 4 ч и остывание в печи - в течение 4-5 ч, причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер составляет 1:6.
Способ получения конструкционно-теплоизоляционного материала
Источник поступления информации: Роспатент

Showing 131-140 of 217 items.
30.03.2019
№219.016.f952

Способ диагностики эксцентриситета ротора электрической машины переменного тока

Изобретение относится к способу диагностики эксцентриситета ротора электрической машины переменного тока. Способ основан на измерении емкости относительно ротора в четырех расположенных равномерно по окружности точках, сравнении значений емкостей в диаметрально противоположно расположенных...
Тип: Изобретение
Номер охранного документа: 0002683583
Дата охранного документа: 29.03.2019
13.04.2019
№219.017.0c4d

Фотоэлектрический модуль

Изобретение относится к области гелиоэнергетики и касается фотоэлектрического модуля. Фотоэлектрический модуль включает в себя корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля, расположенной на внутренней ее стороне, фотоэлектрические преобразователи с различной...
Тип: Изобретение
Номер охранного документа: 0002684685
Дата охранного документа: 11.04.2019
19.04.2019
№219.017.1ce9

Двухъярусная ступень с неразъемной вильчатой лопаткой

Изобретение относится к области энергетического машиностроения и призвано повысить экономичность двухъярусных ступеней, используемых в качестве предпоследних ступеней в цилиндрах низкого давления (ЦНД) конденсационных турбин. В двухъярусной ступени для цилиндра низкого давления мощной...
Тип: Изобретение
Номер охранного документа: 0002685162
Дата охранного документа: 16.04.2019
27.04.2019
№219.017.3c4a

Фотоэлектрический модуль

Изобретение относится к области концентраторных солнечных фотоэлектрических преобразователей, применяемых на наземных гелиоэнергетических установках. Согласно изобретению в известном фотоэлектрическом модуле, содержащем корпус с боковыми стенками, прозрачную фронтальную стенку с линзой Френеля,...
Тип: Изобретение
Номер охранного документа: 0002686123
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3cfb

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо, выполненное в виде передней и задней полости, разделенных радиальной перегородкой. В передней полости установлен передний дефлектор, в задней полости - задний дефлектор. В переднем дефлекторе выполнены отверстия струйного охлаждения...
Тип: Изобретение
Номер охранного документа: 0002686244
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d25

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо с входной и выходной кромками, замковую часть и торцевую стенку. В полом пере установлена перегородка. Между стенкой входной кромки и перегородкой расположен канал охлаждения входной кромки, а между торцевой стенкой и перегородкой...
Тип: Изобретение
Номер охранного документа: 0002686245
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d3b

Способ управления частотно-регулируемым электроприводом штангового глубинного насоса с асинхронным двигателем

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемом электроприводе штангового глубинного насоса с асинхронным двигателем, подключенным к силовой сети через преобразователь частоты. Техническим результатом является уменьшение установленной мощности...
Тип: Изобретение
Номер охранного документа: 0002686304
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3dac

Цифровой управляющий гидрораспределитель

Цифровой управляющий гидрораспределитель относится к области машиностроительной гидравлики, в частности к управляющим гидравлическим аппаратам с пропорциональным управлением, и может быть использован в различных электрогидравлических приводах стационарных систем. Гидрораспределитель содержит...
Тип: Изобретение
Номер охранного документа: 0002686242
Дата охранного документа: 24.04.2019
14.05.2019
№219.017.5184

Лимитер

Изобретение относится к оборудованию для оснащения термоядерных реакторов типа токамак. Лимитер содержит емкость 1, заполненную литием 2 и имеющую тепловой контакт с оммическим или СВЧ-нагревателями 3, кольцо 4, зафиксированное вращающимися опорами 5, неподвижно закрепленными на корпусе...
Тип: Изобретение
Номер охранного документа: 0002687292
Дата охранного документа: 13.05.2019
16.05.2019
№219.017.5256

Способ работы тепловой электрической станции и устройство для его реализации

Изобретение относится к электроэнергетике и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина, например на конденсационных электростанциях - КЭС, на парогазовых электростанциях - ПГУ, использующих топливо - традиционный природный газ. Применение предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002687382
Дата охранного документа: 13.05.2019
Showing 71-77 of 77 items.
04.04.2018
№218.016.365c

Устройство для управления высокотемпературной печью сопротивления

Изобретение относится к средствам управления высокотемпературными печами сопротивления. Технический результат – повышение надежности работы печи. Устройство содержит нагревательный элемент, подключенный к выходу источника питания со входом задания напряжения источника питания, подключенным к...
Тип: Изобретение
Номер охранного документа: 0002646516
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4c98

Пространственная плита покрытия

Изобретение относится к строительству, а именно к покрытию зданий и сооружений. Технический результат заключается в повышении несущей способности большепролетной плиты покрытия. Пространственная плита покрытия разреженной структуры включает верхний и нижний пояса криволинейного очертания,...
Тип: Изобретение
Номер охранного документа: 0002652045
Дата охранного документа: 24.04.2018
20.02.2019
№219.016.c3fe

Способ определения концентрации и идентификации поверхностно-активных веществ в водных растворах

Изобретение относится к области физических измерений. Определение концентрации и идентификация поверхностно-активных веществ в водных растворах заключается в том, что в исследуемом водном растворе определяют зависимость мгновенных значений поверхностного натяжения при увеличении площади...
Тип: Изобретение
Номер охранного документа: 0002469291
Дата охранного документа: 10.12.2012
11.03.2019
№219.016.d8cf

Способ уменьшения гидравлического сопротивления трубопроводных сетей для транспортировки жидких сред

Изобретение относится к теплоэнергетике, позволяет повысить экономичность, эффективность, надежность и ресурс трубопроводных систем. В способе уменьшения гидравлического сопротивления трубопроводных сетей для транспортировки жидких сред, заключающемся в формировании на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002318140
Дата охранного документа: 27.02.2008
10.04.2019
№219.017.05ba

Способ эксплуатации систем теплоснабжения

Изобретение относится к теплоэнергетике и предназначено для использования при эксплуатации систем отопления жилых зданий и повысить эффективность и ресурс систем теплоснабжения, снизить капитальные и эксплуатационные затраты. Технический результат: повышение эффективности и ресурса систем...
Тип: Изобретение
Номер охранного документа: 0002323391
Дата охранного документа: 27.04.2008
10.04.2019
№219.017.0622

Способ нанесения покрытия на изделия из твердых сплавов

Изобретение относится к области машиностроения и служит для повышения микротвердости и износостойкости инструмента или изделия путем увеличения прочности сцепления ионно-плазменного покрытия нитрида титана с поверхностью изделий из твердых сплавов преимущественно на основе монокарбида вольфрама...
Тип: Изобретение
Номер охранного документа: 0002415966
Дата охранного документа: 10.04.2011
21.05.2023
№223.018.68e1

Водная эмульсия октадециламина для защиты от отложений на латунных трубках конденсаторов паровых турбин

Изобретение относится к энергетике и предназначено для использования при эксплуатации паровых турбин электрических станций с целью повышения эффективности их работы, для защиты от отложений, образующихся на теплообменных латунных поверхностях конденсаторов паровых турбин со стороны охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002794927
Дата охранного документа: 25.04.2023
+ добавить свой РИД