×
20.01.2018
218.016.18cf

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТИТАНОВОЙ ЛИГАТУРЫ ДЛЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к получению таблетированной титановой лигатуры, и может быть использовано в ракетостроительной, авиационной, автомобильной и других отраслях промышленности, в которых используются высоколегированные литейные и деформируемые алюминиевые сплавы. Способ включает смешивание порошков активных металлов и их прессование. В качестве порошков активных металлов используют титановые порошки гранулометрического состава от 0,25 до 0,50 мм в количестве от 25 до 35% и от 1,5 до 2,0 мм в количестве от 45 до 50%, их смешивание совместно с порошком легкоплавкого флюса в количестве не менее 18% и мелассой, а прессование смеси осуществляют при давлении от 250 до 300 кг/см с получением брикета в виде таблетки с ее последующим отжигом при температуре от 80 до 100°С в течение от 60 до 90 мин. Изобретение позволяет получить пористые и высокопрочные таблетки, которые полностью растворяются при обычных рабочих температурах расплава, с высокой скоростью растворения легирующего элемента и низкими энергетическими затратами при легировании. 3 пр.

Изобретение относится к области металлургии цветных металлов, в частности к получению таблетированной титановой лигатуры, и может быть использовано в ракетостроительной, авиационной, автомобильной и других отраслях промышленности, в которых используются высоколегированные литейные и деформируемые алюминиевые сплавы.

Известен способ получения алюминиево-титановой лигатуры (патент РФ №2448181, опубл. 20.04.2012 г.), включающий приготовление алюминиевого расплава, который в процессе плавления перегревается выше его температуры ликвидуса. В тигель с алюминиевым расплавом, покрытый флюсом, вводят перфорированный огнеупорный тигель с титановой губкой. Размер отверстий перфорированного тигля меньше размера титановой губки. Перфорированный тигель располагают таким образом, что его край располагается выше зеркала металла в плавильном тигле. После этого титановую губку плавят с использованием концентрированного источника нагрева, в качестве которого используют электрическую дугу или лазер.

Недостатком данного способа являются длительность процесса растворения легирующих компонентов, что повышает трудоемкость и снижает производительность процесса. Дополнительный источник нагрева приводит к повышению энергоемкости процесса.

Известен способ приготовления алюминиево-титановой лигатуры для алюминиевых сплавов (патент РФ №2087574, опубл. 20.08.1997 г.), включающий смешивание мелкодисперсных порошков алюминия и титана, и прессование полученной смеси при давлении 100-350 кг/см2.

Недостатком способа является большой диапазон давления прессования, так как переуплотненный брикет имеет худшие показатели усвоения, поскольку движущийся расплав алюминия не пропитывает таблетку, а создает металлическую корку, которая затрудняет усвоение таблетки при легировании. При прессовании с недостаточным давлением полученная таблетка не достигает прочности, необходимой для транспортировки, хранения и применения легирующих брикетов без осыпания боковых граней.

Известен способ ввода тонкоизмельченных металлов в твердом виде непосредственно в расплав алюминия (патент США №3788839, 1974), включающий ввод в жидкую ванну тонкоизмельченных переходных металлов, перемешивание и отстаивание в течение 15-30 минут.

Недостатком способа является значительные потери алюминия и титана в виде угара, а также необходимость вести процесс при повышенных температурах плавления.

Известен способ получения алюминиевых лигатур (патент РФ №2464337, опубл. 20.10.2012 г.), включающий подготовку алюминиевого расплава, который перегревают до температуры 1000°С. В печи на поверхности алюминиевого расплава создают слой жидкого флюса, который перегревают выше температуры растворения легирующего компонента и вводят легирующий компонент в необходимом количестве.

Недостатком способа являются большие энергетические затраты, а также то, что при перегреве алюминиевого сплава выше 1000°С уже не удается добиться необходимой структуры и равномерного распределения интерметаллидов из-за их различного размера и состава.

Известен способ получения лигатур для производства алюминиевых сплавов (патент РФ №2542191, опубл. 20.02.2015 г.), включающий подготовку экзотермической смеси порошков алюминия и титана и их механоактивацию. Одновременно подготавливают брикеты прессованной титановой стружки. Смесь порошков и брикеты из прессованной титановой стружки вводят одновременно в расплав алюминия, на поверхности которого находится криолит, выдерживают расплав в течение 30 минут с периодическим перемешиванием.

Недостатком способа является технологическая нестабильность и высокая себестоимость лигатуры вследствие использования дорогих чистых компонентов с развитой активной поверхностью, а также многостадийность самого процесса.

Известен способ получения лигатуры (патент РФ №2208656, опубл. 20.07.2003 г.), принятый за прототип, включающий смешивание грубых порошков активных металлов дисперсностью от 0,1 до 3,0 мм с последующим прессованием. Полученный брикет имеет плотность от 0,50 до 0,95 от теоретической плотности смеси порошков активных металлов. При нагревании в расплаве обрабатываемого металла происходит синтез компонентов брикета.

Недостатком данного способа является большой диапазон плотности полученного брикета, поскольку переуплотненный брикет имеет худшие показатели усвоения, а недостаточная плотность полученного брикета приводит к осыпанию боковых граней при транспортировки и хранении. Также полученный брикет имеет неоднородность размеров пор, что в дальнейшем влияет на скорость полного растворения брикета в расплаве.

Техническим результатом является получение высокопрочной таблетированной лигатуры с однородными размерами пор, что в дальнейшем обеспечивает наилучшее время растворения легирующих таблеток.

Технический результат достигается тем, что осуществляют перемешивание порошков титана и легкоплавкого флюса совместно с мелассой, прессование смеси порошков осуществляют при давлении от 250 до 300 кг/см2 и проводят отжиг полученной таблетированной лигатуры при температуре от 80 до 100°С в течение от 60 до 90 мин.

Способ осуществляется следующим образом. Для получения таблетированной лигатуры необходимо использование титановых порошков гранулометрического состава от 0,25 до 0,50 мм (до 25-35%) и от 1,5 до 2,0 мм (45-50%), при содержании флюса не менее 18%, что обеспечивает наилучшее время растворения легирующих таблеток.

При перемешивании порошков в смеситель добавляется меласса, побочный продукт сахарного производства; применение мелассы обеспечивает удовлетворительное перемешивание порошков, а также исключает истирание флюса до пылевидной фракции и оседание флюса и порошка титана на выходе из пуансона (при прессовании).

После перемешивания прессуются таблетки цилиндрической формы. Плотность таблетированной лигатуры обеспечивается давлением прессования, что увеличивает площадь поверхностных контактов между частицами титана и флюса. Предлагаемый диапазон значений давления прессования от 250 до 300 кг/см2 позволяет обеспечить наибольшую площадь контакта между порошками, сформировать прочную связь между материалом основы и легкоплавким компонентом. Диапазон давления прессования выбирается из условий достижения заданной прочности, необходимой для транспортировки, хранения и применения легирующих таблеток без разрушения боковых граней.

Для повышения прочности при одновременном развитии пор за счет удалении влаги таблетированная лигатура проходит стадию отжига при температуре от 80 до 100°С в течение от 60 до 90 мин.

Полученные лигатуры, в зависимости от выбранного химического состава по титану, вводят в алюминиевый сплав перед рафинированием. После введения таблетированной лигатуры расплав перемешивается.

Способ поясняется следующими примерами.

Пример 1. Порошок титана марки ТПП-3 (ВСМПО-АВИСМА) просеивают через сито с размером ячейки 0,5 мм и 2 мм, содержание титана порядка 82%. К смеси порошков титана добавляют флюс KALF (фирмы «Aleastur») 18% и затем заливают мелассу от 7 до 9% в расчете на 100 весовых частей порошков титана и флюса. Затем полученная смесь перемешивается в смесителе в течение 1,5 часов. Результаты смешивания контролируют по физико-технологическим свойствам шихты, определяя насыпную массу, текучесть, прессуемость, а также проводят текущий химический анализ проб. Затем полученную смесь взвешивают и разделяют на порции по 100 г и прессуют пуансоном под давлением 250 кг/см2. В автоматическом режиме автомат выполняет подачу порошка из бункера пресса в матрицу, заполняет матрицу, прессует брикет и затем выталкивает его в конвейер. Затем таблетки проходят стадию отжига при температуре от 80 до 100°С в течение 60 мин.

В приготовленный расплавленный алюминий марки А7Е (1000 г), при температуре 750°С, вводили таблетки и затем через 1, 5, 10, 15, 25 и 30 минут отбирали пробы для контроля химического состава алюминия. Перед отбором каждой пробы проводили перемешивание расплава при помощи импеллера (скорость перемешивания от 5 до 10 см/с) и съем шлака с поверхности расплава.

Химический анализ образцов сплава отобранных в первый промежуток времени (5 минут) показывает незначительное увеличение содержания титана в объеме жидкого алюминия, что объясняется медленным его переходом с поверхности таблетки и низкой скоростью растворения. Растворение таблетки связано с образованием в объеме лигатуры большого количества структурных составляющих с температурой плавления значительно ниже температуры плавления частицы титана. В микрообъеме лигатуры на границе «титановый порошок-флюс» в этот промежуток времени интенсивно проходят диффузионные процессы с образованием твердых растворов. После разрушения легирующего брикета скорость растворения увеличивается и происходит резкое повышение содержания легирующего элемента в сплаве. Представлены расчетные и фактические данные изменения значения легирующего компонента в пробах, отобранных после 30 минут выдержки в расплаве.

Усвоение легирующего компонента - 97,5%.

Пример 2. Способ осуществляют идентично примеру 1. Время перемешивания в смесителе составляет 2 часа, полученную смесь развешивают по 50 г и прессуют пуансоном под давлением 300 кг/см2.

В приготовленный расплавленный алюминий марки А7Е (500 г), при температуре 750°С, вводили таблетки, представлены расчетные и фактические данные прироста легирующего компонента в пробах, отобранных после 30 минут выдержки расплава.

Усвоение легирующего компонента - 98,1%.

Пример 3. Способ осуществляют, как описано в примере 1. Время перемешивания в смесителе 1 час, полученную смесь развешивают по 100 г и прессуют пуансоном при давлении 300 кг/см2.

В приготовленный расплавленный алюминий марки А7Е (1500 г), при температуре 750°С, присаживали таблетки, представлены расчетные и фактические данные прироста легирующего компонента в пробах, отобранных после 30 минут выдержки расплава.

Усвоение легирующего компонента - 98,8%.

Таким образом, использование мелассы при перемешивании, прессование при значении давления от 250 до 300 кг/см2 и отжиг таблеток при температуре от 80 до 100°С в течение от 60 до 90 мин ведет к равномерному распределению флюса по всему объему таблетки и повышению прочности таблетки, а также к образованию однородных пор, что в дальнейшем положительно сказывается на скорости полного растворения таблеток в алюминиевом расплаве. Анализ микроструктуры литых образцов после модифицирования таблетированными лигатурами выявил, что зеренная структура литых образцов существенно не отличается друг от друга, что напрямую связано с качеством полученных легирующих таблеток, микроструктура однородная, мелкозернистая.

Преимуществами титановых лигатур, полученных новым способом, являются: получение пористых и высокопрочных таблеток, полное растворение таблеток при обычных рабочих температурах расплава, высокая скорость растворения легирующего элемента и низкие энергетические затраты при легировании.

Способ получения таблетированной титановой лигатуры для алюминиевых сплавов, включающий смешивание порошков активных металлов и их прессование, отличающийся тем, что в качестве порошков активных металлов используют титановые порошки гранулометрического состава от 0,25 до 0,50 мм в количестве от 25 до 35% и от 1,5 до 2,0 мм в количестве от 45 до 50%, их смешивание совместно с порошком легкоплавкого флюса в количестве не менее 18% и мелассой, а прессование смеси осуществляют при давлении от 250 до 300 кг/см с получением брикета в виде таблетки с ее последующим отжигом при температуре от 80 до 100°С в течение от 60 до 90 мин.
Источник поступления информации: Роспатент

Showing 201-210 of 222 items.
24.06.2020
№220.018.2a4c

Система электродвижения автономных транспортных средств

Изобретение относится к электрическим тяговым системам транспортных средств. Система электродвижения автономных транспортных средств содержит тепловой двигатель, асинхронные двигатели, асинхронный генератор, активный выпрямитель, автономные инверторы, сглаживающий фильтр и тормозное устройство....
Тип: Изобретение
Номер охранного документа: 0002724214
Дата охранного документа: 22.06.2020
04.07.2020
№220.018.2e93

Вибрационная конусная дробилка

Изобретение относится к устройствам для дробления твердых материалов, а именно к инерционным конусным дробилкам с вертикальной осью, и может быть широко использовано в горнорудной, металлургической и строительной отраслях промышленности. Дробилка содержит корпус 1, конус 2 и платформу 3....
Тип: Изобретение
Номер охранного документа: 0002725480
Дата охранного документа: 02.07.2020
18.07.2020
№220.018.340b

Способ подземной разработки пологих пластов угля, склонного к самовозгоранию

Изобретение относится к горному делу и может быть использовано при подземной разработке пологих пластов угля, склонного к самовозгоранию. Отработку запасов осуществляют длинными столбами по простиранию. Выемочные столбы отрабатывают последовательно в восходящем порядке. Подготовку выемочных...
Тип: Изобретение
Номер охранного документа: 0002726752
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.3438

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом предлагаемого...
Тип: Изобретение
Номер охранного документа: 0002726754
Дата охранного документа: 15.07.2020
21.07.2020
№220.018.350a

Способ снижения расхода топлива дизель-генераторными установками в гибридной электростанции с возобновляемыми источниками энергии

Изобретение относится к области управления режимами работы автономных гибридных комплексов с комбинированной генерацией электроэнергии, включающих дизельную электростанцию с одной или несколькими ДГУ, а также один или несколько видов ВИЭ. Способ заключается в том, что на основе получаемых из...
Тип: Изобретение
Номер охранного документа: 0002726943
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.374a

Подводная технологическая платформа

Изобретение относится к транспортировке углеводородного и другого сырья по проложенным по морскому дну трубопроводам большой протяженности. Предложена подводная технологическая платформа, которая состоит из каркаса, манифольда, блока управления и защиты устья скважины, тройника, устья...
Тип: Изобретение
Номер охранного документа: 0002727206
Дата охранного документа: 21.07.2020
24.07.2020
№220.018.375e

Устройство диагностики и оценки остаточного ресурса электродвигателей

Изобретение относится к области диагностики электрооборудования и позволяет производить оценку технического состояния и остаточного ресурса электродвигателя и сопряженного с ним механического оборудования путем регистрации мгновенных значений вибраций, шума, температуры посредством датчиков с...
Тип: Изобретение
Номер охранного документа: 0002727386
Дата охранного документа: 21.07.2020
29.07.2020
№220.018.38b8

Способ бессеточной модуляции тока в неустойчивом режиме горения разряда

Изобретение относится к плазменной энергетике, к области модуляции тока и может быть использовано при разработке радиационно-стойкой высокотемпературной плазменной электроники для космических и наземных ядерных энергетических установок, систем экологической противорадиационной защиты, при...
Тип: Изобретение
Номер охранного документа: 0002727927
Дата охранного документа: 27.07.2020
31.07.2020
№220.018.3acd

Противоморозная добавка для бетонной смеси

Изобретение относится к области строительных материалов и может быть использовано при изготовлении бетонов и строительных растворов, твердеющих при отрицательных температурах. Противоморозная добавка для бетонной смеси включает, мас.%: кремнегель 79,43–87,49, суперпластификатор на...
Тип: Изобретение
Номер охранного документа: 0002728023
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3cd7

Устройство для измерения удельного сопротивления полупроводниковых режущих керамических пластин

Изобретение относится к области контрольно-измерительной техники для определения удельного электрического сопротивления полупроводниковых сменных многогранных режущих пластин из оксидно-карбидной керамики для неразрушающего определения и контроля микроструктурных параметров материала, которые...
Тип: Изобретение
Номер охранного документа: 0002729169
Дата охранного документа: 04.08.2020
Showing 111-112 of 112 items.
12.04.2023
№223.018.47e4

Способ возведения опорного основания дорожной одежды

Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок в условиях слабых грунтов на заболоченных территориях, а также на подвижных...
Тип: Изобретение
Номер охранного документа: 0002747181
Дата охранного документа: 28.04.2021
23.04.2023
№223.018.51c6

Способ контроля параметров дуговых печей

Изобретение относится к области автоматизации контроля технологических параметров в электрометаллургических технологических процессах и может быть использовано в системах адаптивного управления для автоматического регулирования теплового режима дуговых печей. Способ включает регулирование...
Тип: Изобретение
Номер охранного документа: 0002731711
Дата охранного документа: 08.09.2020
+ добавить свой РИД