×
20.01.2018
218.016.1481

Результат интеллектуальной деятельности: УСТРОЙСТВО МАГНИТНОЙ ДЕФЕКТОСКОПИИ РЕЛЬСОВ

Вид РИД

Изобретение

№ охранного документа
0002634806
Дата охранного документа
03.11.2017
Аннотация: Изобретение относится к методам неразрушающего контроля материалов путем исследования магнитных полей рассеяния и может быть использовано при высокоскоростной двухниточной дефектоскопии рельсов. Устройство магнитной дефектоскопии рельсового пути содержит электромагнитные катушки, установленные на осях колесных пар и возбуждающие постоянный магнитный поток на участках рельса, расположенных между пятнами контакта колесных пар с рельсом, и датчики аномалий магнитного поля, установленные на указанных участках рельсов, при этом катушки установлены на осях колесных пар соседних вагонов. Технический результат – повышение обнаруживающей способности магнитодинамического (МД) дефектоскопа на высоких скоростях. 3 ил.

Изобретение относится к методам неразрушающего контроля материалов путем исследования магнитных полей рассеяния и может быть использовано при высокоскоростной двухниточной дефектоскопии преимущественно головок рельсов, в том числе с использованием не специализированного (дефектоскопического), а обычного подвижного железнодорожного состава.

Известен способ магнитодинамического (МД) метода обнаружения дефектов в рельсах [1], [2], заключающийся в возбуждении соответствующими средствами постоянного магнитного потока в рельсе и датчики аномалий (индукционные катушки) магнитного поля, установленные на участке рельса с постоянным магнитным потоком. При совместном перемещении указанных средств возбуждения и датчиков появляется возможность обнаружения аномалий магнитного поля в головке рельса, в частности, вызванных дефектами в головке рельсов. Кроме того, МД метод позволяет обнаруживать стрелки, рельсовые стыки и другие конструктивные элементы рельсового пути, которые могут быть использованы, например, для координатной привязки рельсового транспортного средства.

МД метод обнаружения дефектов в рельсах имеет следующие особенности:

1. Чем больше время взаимодействия магнитного потока с контролируемым объектом (с рельсом), тем больше глубина проникновения и однородность магнитного поля в рельсе и качество обнаружения дефектов;

2. На степень намагничивания головки рельса влияют:

2.1 - сила тока намагничивания катушек, зависящая от энергетических возможностей дефектоскопа;

2.2 - свойства магнитопровода, которые зависят от его поперечного сечения и магнитной проницаемости по всей длине (используемых материалов, площади сечения, наличия зазоров, величины пятен контакта и т.п.);

2.3 - утечка магнитного потока через посторонние магнитопроводящие материалы;

3. Чем выше скорость движения средства магнитной дефектоскопии, тем большим должен быть размер области намагничивания, поскольку при больших скоростях магнитные домены не успевают изменить ориентацию и поле по поперечному сечению рельса не успевает становиться однородным.

МД метод имеет различные варианты реализации в виде устройств.

Известны устройства для МД обнаружения дефектов в рельсах [2], [3], содержащие средство возбуждения постоянного магнитного потока в рельсах, выполненные в виде П-образного магнита, возбуждающего постоянный магнитный поток в рельсах и датчики аномалий магнитного поля, установленные между полюсами магнита.

Недостатком таких устройств является низкая обнаруживающая способность, обусловленная низкой степенью намагничивания рельса из-за сложности обеспечения минимального зазора П-образного магнита с рельсом и малым межполюсным расстоянием, особенно при высоких скоростях дефектоскопии. Увеличение межполюсного расстояния в П-образном магните энергетически нецелесообразно из-за наличия технологических зазоров и возрастания массогабаритных характеристик.

Известны устройства для МД обнаружения дефектов в рельсах [4] и [5], содержащие средства возбуждения постоянного магнитного потока, содержащие специальные колесные пары с намагничивающими катушками, расположенными на осях колесных пар, и датчики аномалий магнитного поля. При этом тележки или средства их контакта с вагоном выполнены из немагнитного материала, что уменьшает утечки магнитного поля через конструктивные элементы вагона.

Недостатком таких устройств является высокая сложность и дороговизна специальных тележек.

Известны устройства МД дефектоскопии рельсового пути [6] и [7], содержащие катушки возбуждения постоянного магнитного потока в рельсах, установленные на осях рабочих (ходовых) колесных пар, и датчики аномалий магнитного поля, установленные на рельсах между этими колесными парами.

Недостатком таких устройств является невысокая степень намагничивания рельса, обусловленная особенностями п. 2.3, отмеченными выше. По п. 2.3 магнитный поток, созданный в оси рабочей колесной пары, может замыкаться через конструктивные элементы вагона, что приводит к неэффективному использованию энергии источника возбуждения магнитного поля. Магнитная изоляция колесных пар тележки требует существенных затрат.

Наиболее близким к заявляемому является устройство [8], содержащее электромагнитные катушки, установленные на осях колесных пар и возбуждающие постоянный магнитный поток на участках рельса, расположенных между пятнами контакта колесных пар с рельсом, и датчики аномалий магнитного поля, установленные на указанных участках рельсов. Использование рабочих колесных пар позволяет проводить магнитодинамическую дефектоскопию с использованием обычного железнодорожного подвижного состава, а не специальными дефектоскопическими вагонами.

Недостатком устройства [8] является его плохая пригодность для дефектоскопии на высоких скоростях дефектоскопических средств. Этот недостаток обусловлен невысокой степенью намагничивания рельса, указанной в особенностях (п. 2.3), отмеченных выше. А именно магнитный поток, созданный в оси рабочей колесной пары, может замыкаться через конструктивные элементы тележки вагона, что приводит к неэффективному использованию энергии источника возбуждения магнитного поля. Магнитная изоляция колесных пар тележки требует существенных затрат.

Указанные выше недостатки аналогов и прототипа становятся особенно актуальными при высокой скорости перемещения подвижного состава. Высокая загруженность железных дорог требует минимальных временных затрат на служебные операции по обслуживанию рельсового пути, в частности на дефектоскопию. Решение этой проблемы может состоять в повышении скорости до 120 км/ч и выше специальных вагонов - дефектоскопов и(или) установке дефектоскопических средств на обычные вагоны. Таким образом, задачей, решаемой заявляемым устройством, является обеспечение возможности высококачественной дефектоскопии рельсов высокоскоростными средствами.

Для решения этой задачи в устройстве магнитной дефектоскопии рельсового пути, содержащем электромагнитные катушки, установленные на осях колесных пар и возбуждающие постоянный магнитный поток на участках рельса, расположенных между пятнами контакта колесных пар с рельсом, и датчики аномалий магнитного поля, установленные на указанных участках рельсов, катушки электромагнитов установлены на осях колесных пар соседних вагонов.

Такое решение позволяет:

1. Увеличить длину намагниченного участка рельса, улучшив характер и степень его намагниченности (особенность 3, отмеченная выше). Расстояние между рельсовыми парами колес одной тележки обычно составляет около 2 (2,2-2,4) метров, а расстояние между осями колесных пар соседних вагонов может достигать 6-8 метров;

2. Повысить энергетическую эффективность дефектоскопии, благодаря уменьшению утечек магнитного поля через различные конструктивные элементы (п. 2.3, описанный выше). В рамках одной тележки, содержащей две колесные пары, такого результата добиться трудно из-за наличия в конструкции большого количества металлических деталей и разнонаправленных полюсов электромагнита на каждой стороне тележки и вагона. При использовании колесных пар соседних вагонов единственным путем магнитного потока оказывается сцепка вагонов, которую несложно выполнить и немагнитных материалов. Кроме того, благодаря соосному направлению магнитного потока в соседних осях колесных пар, практически отсутствует утечка магнитного поля по краям корпуса вагона в зоне каждой тележки;

3. Повысить степень намагниченности участка рельса за счет установки катушек намагничивания на несколько колесных пар соседних вагонов. При этом степень намагничивания увеличивается не только за счет увеличения числа катушек, но из-за увеличения пятна контакта колес с рельсом (п. 2.2 отмеченный выше);

4. Использовать для дефектоскопии колесные тележки обычных вагонов, оснастив их колесные пары катушками возбуждения и соответствующим оборудованием. Такие устройства можно использовать в качестве дефектоскопических вагонов без существенных материальных и временных затрат на специальные вагоны-дефектоскопы.

Техническим результатом использования заявляемого устройства является повышение обнаруживающей способности МД дефектоскопа на высоких скоростях. Указанный результат достигается благодаря:

1. Увеличению расстояния между полюсами магнитов, возбуждающими магнитный поток в рельсах, так что магнитные домены в рельсах успевают принять заданное положение и происходит более равномерное намагничивание рельса по сечению;

2. Уменьшению утечек магнитного потока, из-за разнесения катушек между соседними вагонами;

3. Увеличению степени намагниченности рельсов при использовании по меньшей мере двух колесных пар в каждом вагоне для создания указанного магнитного потока.

Заявляемое устройство иллюстрируют следующие графические материалы:

Фиг. 1 - схема возбуждения магнитного потока, где:

1. Рельс;

2. Электромагнитные катушки;

3. Колесные пары;

4. Магнитный поток;

5. Датчик аномалий магнитного поля.

Фиг. 2 - двухвагонная схема устройства, где:

3-1 - колесные пары первого вагона;

3-2 - колесные пары второго вагона;

6 - сцепное устройство вагонов.

Фиг. 3 - схема возбуждения магнитного потока четырьмя колесными парами соседних вагонов.

Рассмотрим возможность реализации заявляемого устройства. Установка электромагнитных катушек 2 на осях колесных пар 3, Фиг. 1, известна и выполняется путем прямой намотки витков на ось колесных пар с соответствующими конструктивными элементами или установки готовых катушек на оси до крепления на них колес. Катушки устанавливаются на оси близлежащих колесных пар соседних вагонов, а обмотки соединяются согласованно так, чтобы магнитный поток проходил по пути: ось одного колеса - колесо - пятно контакта колеса с рельсом (самая узкая часть магнитопровода) - рельс (в основном головка рельса) - пятно контакта второго колеса и т.д. Высокие требования по скорости дефектоскопии могут привести к тому, что степени намагничивания рельсов в рассмотренном варианте окажется недостаточной для уверенной МД рельсов. Для решения этой проблемы можно увеличить степень намагничивания путем установки электромагнитных катушек 2 на обе колесные пары соседних тележек 3-1 и 3-2, Фиг. 2. Естественно, что направления тока в катушках должны быть согласованы, чтобы магнитные потоки в рельсах складывались, Фиг. 3. Датчики аномалий магнитного поля 5 в виде индукционных, магниторезистивных, феррозондовых измерительных преобразователей или датчиков Холла устанавливаются на обеих нитках рельсов у задней по направлению движения колесной пары, чтобы эта часть рельса дольше намагничивалась. Для возможности движения вагонов в противоположном направлении следует установить два дополнительных датчика аномалий 5, Фиг. 2.

Работа устройства магнитной дефектоскопии рельсового пути очевидна. Высокоскоростной состав с заданной скоростью перемещается по рельсовому пути. Электромагнитные катушки, установленные на осях колесных пар соседних вагонов, возбуждают постоянный магнитный поток на участках рельса, расположенных между пятнами контакта колесных пар с рельсом. Датчики аномалий магнитного поля, установленные на указанных участках рельсов, воспринимают аномалии магнитного поля: дефекты рельсового пути и конструктивные элементы (стрелки, стыки, сварные швы и т.п.).

Таким образом, заявляемое устройство может быть реализовано, неизвестно на современном уровне развития техники и позволяет повысить обнаруживающую способность МД дефектоскопа на высоких скоростях движения, а за счет этого - безопасность железнодорожного транспорта.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. http://innorail2015.hu/wp-content/uploads/2015/12/MARKOV-Anatoly_ANTIPOV-Andrey_RU.pdf.

2. Гурвич А.К., Довнар Б.П., Козлов В.Б., Круг Г.А., Кузьмина Л.И., Матвеев А.И.; под ред. Гурвича А.К. Неразрушающий контроль рельсов при их эксплуатации и ремонте. - М.: Транспорт, 1983. - 318 с.

3. АС СССР №1516944.

4. Патент RU 2225308.

5. Патент 2266225.

6. Патент RU 10465.

7. Патент RU 127703.

8. Патент RU 2521095.

Устройство магнитной дефектоскопии рельсового пути, содержащее электромагнитные катушки, установленные на осях колесных пар и возбуждающие постоянный магнитный поток на участках рельса, расположенных между пятнами контакта колесных пар с рельсом, и датчики аномалий магнитного поля, установленные на указанных участках рельсов, отличающееся тем, что катушки установлены на осях колесных пар соседних вагонов.
УСТРОЙСТВО МАГНИТНОЙ ДЕФЕКТОСКОПИИ РЕЛЬСОВ
УСТРОЙСТВО МАГНИТНОЙ ДЕФЕКТОСКОПИИ РЕЛЬСОВ
УСТРОЙСТВО МАГНИТНОЙ ДЕФЕКТОСКОПИИ РЕЛЬСОВ
Источник поступления информации: Роспатент

Showing 31-35 of 35 items.
15.11.2019
№219.017.e261

Способ определения зоны досягаемости парашютистом целевой точки приземления

Изобретение относится к способам информационного обеспечения управляемого спуска на парашюте. Способ определения зоны досягаемости парашютистом целевой точки приземления заключается в том, что на парашютисте устанавливают модуль спутниковой навигации, датчик скорости ветра, средство отображения...
Тип: Изобретение
Номер охранного документа: 0002705928
Дата охранного документа: 12.11.2019
06.03.2020
№220.018.09e4

Способ высокоскоростного ультразвукового контроля рельсов

Использование: для высокоскоростного ультразвукового контроля рельсов. Сущность изобретения заключается в том, что подают в рельс ультразвуковые зондирующие сигналы несколькими однонаправленными наклонными электроакустическими преобразователями, получают ими отраженные ультразвуковые сигналы,...
Тип: Изобретение
Номер охранного документа: 0002715885
Дата охранного документа: 04.03.2020
09.07.2020
№220.018.30bb

Переносный робототехнический комплекс огневой поддержки и боевого обеспечения

Роботизированная платформа комплекса и ее бортовые системы электропитания, управления и передачи информации, технического зрения выполнены с возможностью переноски и сборки военнослужащими. В состав комплекса включены переносимый ретранслятор с радио- и волоконно-оптическим каналами связи, а...
Тип: Изобретение
Номер охранного документа: 0002725942
Дата охранного документа: 07.07.2020
16.07.2020
№220.018.3372

Способ корректировки огня артиллерии с использованием мультикоптера

Изобретение относится к способам ведения воздушной артиллерийской разведки и может быть использовано для корректировки стрельбы артиллерии по целям, ненаблюдаемым с огневых позиций. Для корректировки огня артиллерии используют мультикоптер с бортовой видеокамерой и наземный пульт управления с...
Тип: Изобретение
Номер охранного документа: 0002726460
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.342e

Способ определения координат наземных объектов при фотосъёмке с беспилотного летательного аппарата

Изобретение относится к способам обработки аэрофотоснимков для координатной привязки обнаруживаемых наземных объектов. Заявленный способ заключается в том, что на беспилотном летательном аппарате (БЛА) устанавливают бортовые модуль спутниковой навигации, инерциальный модуль угловой ориентации,...
Тип: Изобретение
Номер охранного документа: 0002726902
Дата охранного документа: 16.07.2020
Showing 41-45 of 45 items.
25.04.2020
№220.018.18aa

Способ высокоскоростной ультразвуковой дефектоскопии с использованием эффекта доплера

Использование: для высокоскоростной ультразвуковой дефектоскопии с использованием эффекта Доплера. Сущность изобретения заключается в том, что в процессе относительного движения бесконтактного акустического преобразователя и контролируемого изделия излучают в изделие ультразвуковые колебания на...
Тип: Изобретение
Номер охранного документа: 0002720043
Дата охранного документа: 23.04.2020
29.05.2020
№220.018.2176

Способ бесконтактной ультразвуковой дефектоскопии с использованием эффекта доплера

Использование: для бесконтактной ультразвуковой дефектоскопии с использованием эффекта Доплера. Сущность изобретения заключается в том, что в процессе относительного движения бесконтактного акустического преобразователя и контролируемого изделия на заданной частоте излучают в изделие...
Тип: Изобретение
Номер охранного документа: 0002722089
Дата охранного документа: 26.05.2020
06.07.2020
№220.018.2f94

Способ ультразвукового контроля изделий с эквидистантными поверхностями

Использование: для неразрушающего контроля изделий с эквидистантными поверхностями ультразвуковым зеркально-теневым методом. Сущность изобретения заключается в том, что с помощью наклонного электроакустического преобразователя с заданным шагом излучают в изделие зондирующие ультразвуковые...
Тип: Изобретение
Номер охранного документа: 0002725705
Дата охранного документа: 03.07.2020
20.04.2023
№223.018.4dba

Намагничивающий узел мобильного рельсового дефектоскопа

Изобретение относится к методам неразрушающего контроля материалов путем исследования магнитных полей рассеяния и может быть использовано при высокоскоростной двухниточной дефектоскопии рельсов. Намагничивающий узел мобильного рельсового дефектоскопа содержит соленоиды, связанные магнитной...
Тип: Изобретение
Номер охранного документа: 0002793187
Дата охранного документа: 29.03.2023
20.04.2023
№223.018.4dff

Способ оценки стыковых зазоров рельсов железнодорожного пути

Изобретение относится к методам неразрушающего контроля железнодорожного пути, в частности, к методам оценки величин зазоров в болтовых стыках рельсов. В процессе движения мобильного дефектоскопного средства генерируют магнитное поле в рельсах, магниточувствительными датчиками фиксируют...
Тип: Изобретение
Номер охранного документа: 0002793171
Дата охранного документа: 29.03.2023
+ добавить свой РИД