×
20.01.2018
218.016.144c

Результат интеллектуальной деятельности: Способ производства литейных жаропрочных наноструктурированных коррозионно-стойких сплавов на никелевой основе

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей. Способ производства литейных жаропрочных сплавов на никелевой основе включает расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование полученного расплава в две стадии. На первой стадии рафинирования вводят окислитель в количестве, превышающем необходимое для окисления углерода до его диоксида в 2,0-8,5 раза, в атмосфере инертного газа при давлении 20-150 мм рт.ст., затем проводят раскисление расплава и удаляют газ, после чего осуществляют вторую стадию рафинирования, на которой вводят редкоземельные металлы в количестве, превышающем в 2,0-20,0 раз количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром с активными легирующими элементами. После проведения первой стадии обезуглероживающего рафинирования на поверхность расплава присаживают шлаковую смесь, состоящую из, мас.%: 35-65 BaO, 15-30 BaF, 15-30 BaCl, 5-15 NiO, в количестве 0,3-0,8 мас.% от массы расплава, в 2-3 приема с выдержкой 5-15 мин после каждой присадки, а в качестве активных легирующих элементов, вводимых в расплав с хромом, используют титан, алюминий и по крайней мере один элемент, выбранный из тантала, углерода, ниобия и гафния. Получают стабильные результаты по содержанию фосфора в расплаве менее 0,007 мас.%, вследствие чего повышается долговечность сплавов при рабочих температурах. 1 табл., 14 пр.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных углеродсодержащих и безуглеродистых сплавов на никелевой основе, которые могут быть использованы для литья лопаток газотурбинных двигателей, газотурбинных установок и других деталей с монокристаллической структурой.

В литейных жаропрочных сплавах фосфор наряду с кислородом, азотом и серой относится к вредным примесям. Образуя легкоплавкие соединения типа фосфидов, фосфор инициирует участки с локальным оплавлением, снижая тем самым эксплуатационные характеристики жаропрочных сплавов, в особенности их длительную прочность на длинных базах испытаний. В настоящее время общее содержание фосфора в жаропрочных сплавах составляет 0,01-0,015 мас. %, что определяется экономическими соображениями и производственными возможностями. Для устранения возможности образования фосфидов общее содержание фосфора в сплавах не должно превышать 0,007 мас. %.

Известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в две стадии с введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и последующим введением в вакууме редкоземельных металлов, хрома, активных элементов и рафинирующих добавок - кальция в количестве 0,02-0,2% от массы расплава под давлением инертного газа и лантана в количестве 0,01-0,3% от массы расплава в вакууме (RU 2221067 С1, 10.01.2004).

Недостатком известного способа является высокое остаточное содержание кальция в готовом сплаве, что приводит к снижению его прочностных характеристик.

Известен способ выплавки безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование расплава в две стадии с введением окислителя в атмосфере инертного газа под давлением 20-150 мм рт.ст., раскисление магнием, последующее введение в вакууме редкоземельных металлов церия и иттрия, добавление хрома и активных легирующих элементов и рафинирующих добавок - магния, лантана и скандия (RU 2353688 С1, 27.04.2009).

Наиболее близким аналогом является способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование с использованием окислителя в количестве, превышающем необходимое для окисления углерода до его диоксида в 2,0-8,5 раз, раскисление, введение активных легирующих элементов, в котором обезуглероживающее рафинирование ведут в две стадии: первую стадию проводят введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст., затем проводят раскисление и газ удаляют, после чего осуществляют вторую стадию рафинирования введением редкоземельных металлов в количестве в 2,0-20,0 раз превышающем количество углерода, оставшегося в расплаве после первой стадии рафинирования и после второй стадии рафинирования перед введением активных легирующих элементов в расплав вводят хром (RU 2074569 С1, 27.02.1997).

Общим недостатком всех известных способов производства литейных жаропрочных сплавов на никелевой основе является невозможность удаления фосфора из расплава в связи с тем, что рафинирующие добавки не вступают с ним в химическое взаимодействие.

Технической задачей предлагаемого изобретения является улучшение эксплуатационных характеристик литейных жаропрочных сплавов на никелевой основе.

Техническим результатом предлагаемого изобретения является получение стабильных результатов по содержанию фосфора в расплаве менее 0,007 мас. % и, как следствие, повышение долговечности сплавов при рабочих температурах.

Технический результат достигается предложенным способом производства литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование полученного расплава в две стадии, причем на первой стадии рафинирования вводят окислитель в количестве, превышающем необходимое для окисления углерода до его диоксида в 2,0-8,5 раза, в атмосфере инертного газа при давлении 20-150 мм рт.ст., затем проводят раскисление расплава и удаляют газ, после чего осуществляют вторую стадию рафинирования, на которой вводят редкоземельные металлы в количестве, превышающем в 2,0-20,0 раз количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром с активными легирующими элементами. После проведения первой стадии обезуглероживающего рафинирования на поверхность расплава присаживают шлаковую смесь, состоящую из, мас. %: 35-65 BaO, 15-30 BaF2, 15-30 BaCl2, 5-15 NiO, в количестве 0,3-0,8 мас. % от массы расплава, в 2-3 приема с выдержкой 5-15 мин после каждой присадки, а в качестве активных легирующих элементов, вводимых в расплав с хромом, используют титан, алюминий и, по крайней мере, один элемент, выбранный из тантала, углерода, ниобия и гафния.

Установлено, что присадка шлаковой смеси, состоящей из, мас. %: 35-65 ВаО, 15-30 BaF2, 15-30 ВаCl2, 5-15 NiO, в количестве 0,3-0,8 мас. % от массы расплава позволяет существенно (в 2-3 раза) снизить содержание фосфора в расплаве на основе никеля. Введение шлаковой смеси системы BaO-BaF2-BaCl2-NiO после окислительного рафинирования расплава приводит к образованию сложного химического соединения типа k⋅ВаО⋅Р2O5⋅m⋅BaF2⋅n⋅ВаСl2, которое после адгезии с материалом плавильного тигля не разлагается до конца плавки.

Поскольку в индукционных печах, в частности в вакуумных индукционных, нагрев шлака происходит путем теплопередачи от металла, то активный слой шлака довольно тонкий. Кроме этого, в плавильном тигле индукционных печей, в связи с воздействием магнитного поля, поверхность расплава имеет выпуклую форму, величина которой увеличивается с повышением подаваемой мощности на индуктор, что приводит к эффекту отбрасывания шлака к стенкам тигля. При этом шлак взаимодействует с огнеупорными стенками тигля и удаляется из реакционной зоны. Для повышения продолжительности и эффективности взаимодействия шлака с расплавом шлаковую смесь необходимо присаживать в 2 или более приемов с выдержкой не менее 5 минут после каждой присадки.

Перед присадкой шлаковой смеси производят замер степени окисленности расплава кислородными зондами. Величина измеренной электродвижущей силы (эдс) может варьироваться от -50 до -250 мВ.

При менее отрицательных значениях э.д.с. рекомендуется присаживать на поверхность расплава шлаковую смесь с большим содержанием ВаО, при более отрицательных - с меньшим. При этом увеличивается содержание BaF2 и ВаCl2.

Примеры осуществления

Была осуществлена выплавка литейных жаропрочных коррозионностойких сплавов на никелевой основе: сплава №1 (система Ni-Co-Mo-W-Re-Cr-Ta-Al-Ti) и сплава №2 (система Ni-Co-Mo-W-C-Cr-Ta-Al-Ti-Nb-Hf). Плавки проводили в вакуумной индукционной печи в тигле емкостью 20 кг. В тигель загружали шихтовые материалы: никель, кобальт, вольфрам, молибден и для сплава №1 также рений. Шихту расплавляли под вакуумом. После полного расплавления шихты откачку плавильной камеры прекращали и напускали в камеру инертный газ (аргон) до давления 80 мм рт.ст., проводили первую стадию обезуглероживающего рафинирования введением окислителя (закись никеля) в количестве 0,5% от массы шихтовых материалов, что превышает необходимое для окисления углерода до его диоксида 2-2,5 раза, в атмосфере инертного газа при давлении 80 мм рт.ст. (содержание углерода 0,015-0,020 мас. %).

Для уточнения состава присаживаемой шлаковой смеси после завершения первой стадии обезуглероживающего рафинирования с помощью кислородных зондов измерили значение э.д.с, оценивая таким образом степень окисленности расплава.

Далее на поверхность расплава присаживали шлаковую смесь в один или более приемов с выдержкой после каждой присадки. Состав шлаковой смеси и режимы присадки приведены в таблице. После присадки осуществляли раскисление расплава введением лигатуры никель-магний в количестве 0,05 мас. % магния от массы расплава и откачивали аргон. Проводили вторую стадию рафинирования введением РЗМ - церия и иттрия, в количестве 0,01% от массы шихтовых материалов каждого элемента, что превышает количество углерода, оставшегося в расплаве после первой стадии рафинирования в 2-4 раза.

После второй стадии рафинирования в расплав вводили хром с другими активными легирующими элементами: танталом, алюминием и титаном для сплава №1 и углеродом, танталом, алюминием, титаном, ниобием, гафнием для сплава №2.

Содержание фосфора в расплаве определяли на масс-спектрометре iCAPQ.

Долговечность τ900 измеряли в соответствии с ГОСТ 10145-81.

Результаты определения остаточного содержания фосфора в готовых сплавах №1 и №2 и их долговечности при Т=900°C в зависимости от состава шлаковой смеси, количества ее присадок на жидкий расплав, времени выдержки после каждой присадки и значений э.д.с. представлены в таблице.

Как видно из представленных результатов, на обоих сплавах максимальный эффект дефосфорации был достигнут после присадки на поверхность расплава шлаковой смеси, состоящей из, мас. %: 35-65 ВаО, 15-30 BaF2, 15-30 ВаCl2, 5-15 NiO, в количестве 0,3-0,8% от массы расплава в два приема с выдержкой после каждой присадки в течение времени 5-10 мин. Достигнутое остаточное содержание фосфора составило 0,002-0,004 мас. % (примеры 1-4) против 0,010-0,011 мас. % в металле, выплавленном по способу-прототипу (примеры 13, 14). Изменение соотношения компонентов ВаО - BaF2 - ВаCl2 - NiO хорошо согласуются с измерениями значений эдс(Е): при более отрицательных значениях Е количество ВаО и NiO уменьшается, а при менее отрицательных - увеличивается, что соответствует поддержанию окислительного потенциала системы металл-шлак на постоянном уровне, необходимом для образования соединения Р2O5.

Уменьшение содержания в шлаке ВаО до 30 мас. % (примеры 5 и 6) или ее увеличение до 70 мас. % (пример 7) не приводит к уменьшению остаточного содержания фосфора в сплавах.

При присадке шлаковой смеси оптимального состава при ее оптимальных количествах и времени выдержки после присадки, но в один прием (примеры 8 и 9) приводит лишь к незначительному снижению содержания фосфора (конечное содержание в готовых сплавах 0,008-0,009 мас. %). Это объясняется тем, что основная часть шлака не вступила во взаимодействие с расплавом и, путем адгезии, вступила в соединение с материалом тигля.

Аналогичный способ присадки шлаковой смеси, но в три приема (пример 10), позволяет достичь снижения содержания фосфора до 0,007 мас. %.

Увеличение времени выдержки после присадки шлаковой смеси оптимального состава на поверхность расплава до 15 мин. (пример 11) нецелесообразно.

Использование в качестве шлакообразующих компонентов кальцийсодержащих материалов, таких как СаО и CaF2, которые применяются в сталеплавильных процессах для дефосфорации сталей (пример 12), положительных результатов не дало.

Таким образом, предложенный способ (примеры 1-4, 10-11) обеспечивает получение стабильных результатов по содержанию фосфора в расплаве менее 0,007 мас. %, что позволяет стабильно повысить долговечность сплавов при рабочих температурах на 59-113 часов по сравнению с материалом, выплавленным по способу-прототипу.

Использование изобретения позволит повысить ресурс работы деталей ГТД.

Способ производства литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование полученного расплава в две стадии, причем на первой стадии рафинирования вводят окислитель в количестве, превышающем необходимое для окисления углерода до его диоксида в 2,0-8,5 раза, в атмосфере инертного газа при давлении 20-150 мм рт.ст., затем проводят раскисление расплава и удаляют газ, после чего осуществляют вторую стадию рафинирования, на которой вводят редкоземельные металлы в количестве, превышающем в 2,0-20,0 раз количество углерода, оставшегося в расплаве после первой стадии рафинирования, а после второй стадии рафинирования в расплав вводят хром с активными легирующими элементами, отличающийся тем, что после проведения первой стадии обезуглероживающего рафинирования на поверхность расплава присаживают шлаковую смесь, состоящую из, мас.%: 35-65 BaO, 15-30 BaF, 15-30 BaCl, 5-15 NiO, в количестве 0,3-0,8 мас.% от массы расплава, в 2-3 приема с выдержкой 5-15 мин после каждой присадки, а в качестве активных легирующих элементов, вводимых в расплав с хромом, используют титан, алюминий и по крайней мере один элемент, выбранный из тантала, углерода, ниобия и гафния.
Источник поступления информации: Роспатент

Showing 71-80 of 370 items.
20.09.2015
№216.013.7c3e

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей. Предложен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля....
Тип: Изобретение
Номер охранного документа: 0002563403
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
Showing 71-80 of 338 items.
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832f

Композиционный слоистый материал и способ его получения

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой...
Тип: Изобретение
Номер охранного документа: 0002565186
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.834c

Градиентный металлостеклопластик и изделие, выполненное из него

Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с...
Тип: Изобретение
Номер охранного документа: 0002565215
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.86da

Свариваемый сплав на основе титана

Изобретение относится к металлургии, а именно к производству титановых сплавов, и может быть использовано для изготовления деформированных полуфабрикатов, а также отливок, предназначенных для изготовления деталей энергетического и транспортного машиностроения, авиационной и космической техники...
Тип: Изобретение
Номер охранного документа: 0002566125
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8dcc

Способ получения полимерных пленок с пористой градиентной структурой

Изобретение относится к способу получения полимерных пленок с пористой градиентной структурой и может быть использовано в качестве разделительных мембран, покрытий, электроизоляционных, гидрофобных и защитных материалов для устройств радио- и микроэлектроники, деталей оптических систем,...
Тип: Изобретение
Номер охранного документа: 0002567907
Дата охранного документа: 10.11.2015
+ добавить свой РИД