×
20.01.2018
218.016.1381

Результат интеллектуальной деятельности: ИНФРАКРАСНЫЙ СВЕТОВОД С БОЛЬШИМ ДИАМЕТРОМ ПОЛЯ МОДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к фотонно-кристаллическим световодам для волоконной оптики среднего инфракрасного диапазона спектра, конкретно к медицинским СО лазерам. Инфракрасный световод с большим диаметром поля моды содержит сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. При этом сердцевина диаметром 92,5-97,5 мкм содержит центральный стержень диаметром 10,6-11,7 мкм, оболочка выполнена диаметром 0,3-0,5 мм, а стержни в оболочке того же диаметра, что и центральный стержень, расположены на расстоянии 52,7-58,3 мкм между их центрами, кроме того, центральный стержень выполнен из кристаллов твердых растворов хлорид-бромида серебра. Технический результат – минимизация апертуры выходящего лазерного излучения и обеспечение стабильного и контролируемого режима работы медицинского СО лазера. 1 ил.

Изобретение относится к фотонно-кристаллическим световодам для волоконной оптики среднего инфракрасного диапазона спектра, конкретно к медицинским СО2 лазерам, снабженным волоконным кабелем для передачи электромагнитного излучения на длине волны 10,6 мкм.

При воздействии лазерного излучения на органические ткани важными параметрами являются: плотность мощности лазерного излучения, глубина его проникновения, числовая апертура (NA) при одномодовом режиме работы. Особую значимость эти параметры приобретают при выполнении инвазивных операций. Щадящий режим воздействия на ткани излучения углекислотного лазера, глубина проникновения которого составляет от 20 до 50 мкм, делает его использование предпочтительным при выполнении сложных хирургических операций, по сравнению с другими лазерами, работающими в видимой и ближней инфракрасной области спектра. Излучение этих лазеров передается по кварцевому волокну и значительно глубже проникает в органическую ткань, в том числе здоровую, травмируя ее. Например глубина проникновения в органические ткани излучения гольмиевого ИАГ-лазера с длиной волны 2,09 мкм составляет 0,5 мм, излучение диодных лазеров с длиной волны 0,81 мкм проникает на глубину от 4 до 6 мм [A.M. Шулутко, А.А. Овчинников, и др. Лазерные эндохирургические операции. http://medbe.ru/materials/khirurgiya-trakhei-i-bronkhov/lazernye-endokhirurgicheskie-operatsii/©medbe.ru].

Известен одномодовый двухслойный кристаллический инфракрасный световод (ИК) [Патент РФ 2340920 от 10.12.2008 / Жукова Л.В., Жуков В.В., Примеров Н.В., Чазов А.И., Корсаков А.С.] на основе твердых растворов хлорид-бромида серебра, легированных йодидом одновалентного таллия, который имеет сердцевину диаметром 15-45 мкм и содержит ингредиенты при следующем соотношении в мас. %: хлорид серебра 19,5-15,0; бромид серебра 80,0-82,0; йодид одновалентного талия 0,5-3,0. Оболочка диаметром 700-1000 мкм выполнена из твердых растворов хлорид-бромида серебра при следующем соотношении в мас. %: хлорид серебра 19,0-21,0; бромид серебра 81,0-79,0. Световод предназначен для работы в спектральном диапазоне от 5 до 30 мкм.

Недостатком световода является содержание в составе токсичных галогенидов таллия, что недопустимо для медицинского применения.

Известен одномодовый кристаллический инфракрасный световод [Патент РФ №2340921 от 10.12.2008. Бюл. №34 // Жукова Л.В., Жуков В.В., Примеров Н.В., Чазов А.И., Корсаков А.С.] на основе твердых растворов хлорид-бромида серебра, который имеет сердцевину диаметром 20-110 мкм и содержит ингредиенты при следующем соотношении в мас. %: хлорид серебра 19,0-21,0; бромид серебра 81,0-79,0. Оболочка диаметром 700-900 мкм содержит те же ингредиенты при соотношении в мас. %: хлорид серебра 25,0-35,0; бромид серебра 75,0-65,0. Световод предназначен для работы в спектральном диапазоне 3-30 мкм.

Недостатком световода является малый диаметр сердцевины световода - от 20 до 39 мкм при работе на длине волны 10,6 мкм (СО2 лазер), что затрудняет стыковку лазера со световодом при изготовлении взаимозаменяемых оптических компонентов. Замена световодов связана с процедурой их стерилизации и дезинфекции после использования.

Известен одномодовый двухслойный кристаллический инфракрасный световод [Патент РФ №2413257 от 27.02.2011. Бюл. №6 // Жукова Л.В., Жуков В.В., Чазов А.И., Корсаков А.С.] сердцевина которого, диаметром от 10 до 130 мкм, выполнена из твердых растворов бромида серебра, легированных иодидом одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 97,0-90,0; йодид одновалентного таллия 3,0-10,0, а оболочка выполнена двухслойной, при этом первый слой оболочки диаметром от 100 до 300 мкм выполнен из твердых растворов бромида серебра - йодида одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 99,5-97,0; йодид одновалентного таллия 0,5-3,0, а второй слой оболочки диаметром от 0,9 до 1,15 мм выполнен из твердых растворов бромида серебра - йодида одновалентного таллия при следующем соотношении ингредиентов в мас. %: бромид серебра 94,0-98,0; йодид одновалентного таллия 6,0-2,0.

Недостатком световода является содержание в составе токсичных ингредиентов галогенидов таллия, что недопустимо для медицинского применения.

Известен также одномодовый двухслойный кристаллический инфракрасный световод [Патент РФ №2504806 от 20.01.2014 // Корсаков А.С., Жукова Л.В., Кортов C.B., Врублевский Д.С.], включающий сердцевину и оболочку диаметром 10-250 мкм с содержанием твердого раствора бромид-иодида одновалентного таллия (ТlВr0.46I0.54).

Недостатком данного световода, несмотря на удовлетворительный диаметр поля моды - 100 мкм на длине волны 10,6 мкм, также является содержание в составе токсичных галогенидов таллия, что недопустимо для медицинского применения.

Известен одномодовый фотонно-кристаллический световод [Аrno Millo, Lilya Lobachinsky, Abraham Katzir Single-mode octagonal photonic crystal fibers for the middle infrared. Appliede physics letters vol. 92 021112(2008)] с диаметром оболочки 0,9 мм, выполненный из твердых растворов хлорид-бромида серебра при следующем соотношении ингредиентов в мас. %: хлорид серебра 30%, бромид серебра 70%; и содержащий 80 вставок диаметром 25 мкм состава хлорид серебра 70%; бромид серебра 30%. расположенных четырьмя рядами в октогональном порядке с шагом в пределах ряда 42 мкм и шагом между рядами в 55 мкм. Диаметр эффективной сердцевины, обеспечивающий одномодовый режим распространения электромагнитного излучения на длине волны в 10,6 мкм, составляет 110 мкм.

Недостатком данного световода является сложность в изготовлении профиля микроструктуры, т.е. изготовление инфракрасного световода с большим диаметром поля моды. Кроме того, световод имеет большой диаметр оболочки, т.е. 0,9 мм, что ограничивает его применение для внутриполостных операций.

Наиболее близким техническим решением является инфракрасный световод с большим диаметром поля моды [патент РФ №2506615 от 10.02.2014 // Корсаков А.С., Жукова Л.В., Жуков В.В., Врублевский Д.С.]. Световод включает сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке. Сердцевина диаметром 98-112 мкм выполнена из кристаллов на основе бромида серебра, содержащего твердый раствор бромид-йодида одновалентного таллия (ТlВr0.46I0.54), при следующем соотношении компонентов, мас. %: бромид серебра 91,0-61,0; твердый раствор (ТlВr0.46I0.54). 9,0-39,0. В оболочке расположены стержни диаметром 42-48 мкм на расстоянии 70-80 мкм между их центрами при следующем соотношении компонентов их состава, мас. %: бромид серебра 92,0-64,5; твердый раствор (ТlВr0.46I0.54) 8,0-35,5.

Недостатком инфракрасного световода является содержание в его составе токсичных галогенидов одновалентного таллия (ТlВr0.46I0.54), что недопустимо для медицинского применения.

Задачей изобретения является получение инфракрасного световода с большим диаметром поля моды, работающего на длине волны 10,6 мкм, содержащего сердцевину с центральным стержнем (на рисунке граница изображена пунктиром), и оболочку диаметром 0,3-0,5 мм, отделенную от сердцевины кольцом из шести стержней. Сердцевина, оболочка, центральный стержень в сердцевине и шесть стержней в оболочке изготовлены из кристаллов на основе твердых растворов системы хлорид - бромид серебра, но имеющих различный состав (см. чертеж). ИК-световод предназначен для медицинских СО2 лазеров.

Поставленная задача решается за счет того, что инфракрасный световод с большим диаметром поля моды, включающий сердцевину и оболочку, состоящую из стержней, расположенных в гексагональном порядке, отличающийся тем, что сердцевина диаметром 92,5-97,5 мкм содержит центральный стержень диаметром 10,6-11,7 мкм, оболочка выполнена диаметром 0,3-0,5 мм, а стержни в оболочке того же диаметра, что и центральный стержень, расположены на расстоянии 52,7-58,3 мкм между их центрами, при этом центральный стержень выполнен из кристаллов твердых растворов хлорид-бромида серебра при следующем соотношении компонентов, мас. %:

Хлорид серебра 13,1-12,3
Бромид серебра 86,9-87,7

сердцевина и оболочка выполнены из кристаллов твердых растворов при следующем соотношении компонентов, мас. %:

Хлорид серебра 14,8-13,9
Бромид серебра 85,2-86,1

стержни в оболочке имеют состав при следующем соотношении компонентов, мас. %:

Хлорид серебра 20,7-19,8
Бромид серебра 79,3-80,2

В ИК-световодах, имеющих такую структуру и состав, в сердцевине распространяется максимум электромагнитного излучения, т.е. только одна мода низшего порядка, в пределах фундаментальной запрещенной зоны, какой является оболочка, где электромагнитное излучение не распространяется (см. чертеж). На чертеже представлена схема инфракрасного светового с большим диаметром поля моды (MFD)=95,0±2,5 мкм. Центральный стержень и шесть стержней в оболочке имеют диаметр (d)=11,1±0,6 мкм, стержни в оболочки расположены на расстоянии Δ=55,5±2,8 мкм между их центрами. Оболочка имеет диаметр (D)=0,4±0,1 мкм.

Новый световод с большим диаметром поля моды предназначен в основном для медицинского СО2 лазера, изготовлен методом экструзии из нетоксичных кристаллов хлорид-бромид серебра, а в прототипе световод содержит токсичные галогениды таллия (ТlВr0.46I0.54).

Новая фотонная структура световода изготовлена методом экструзии из кристаллов на основе твердых растворов хлорид-бромид серебра и состоит из сердцевины определенного состава с центральным стержнем диаметром от 10,6 до 11,7 мкм другого состава, имеющего больший показатель преломления, чем составы сердцевины, оболочки и шести стержней в оболочке. В оболочке диаметром от 0,3 до 0,5 мм расположены в гексагональном порядке шесть стержней того же диаметра, что и центральный стержень, на расстоянии между их центрами от 52,7 до 58,3 мкм, что позволяет получать большой диаметр поля моды от 92,5 до 97,5 мкм при сохранении одномодового режима работы на длине волны 10,6 мкм (СО2 лазер).

Благодаря совокупности отличительных признаков, а именно сложной структуре ИК-световодов и определенным химическим составам сердцевины и оболочки, а также центрального стержня, расположенного в сердцевине, и наличию шести стержней в оболочке, режим работы инфракрасного световода является одномодовым в пределах фундаментальной запрещенной зоны.

Пример 1

Методом экструзии из кристаллов на основе твердых растворов хлорид-бромида серебра изготовлены световоды с диаметром сердцевины 95,0 мкм, в которую помещен центральный стержень, диаметром 11,1 мкм. Состав сердцевины в мас. %:

Хлорид серебра - 14,4;

Бромид серебра - 85,6.

Состав центрального стержня в мас. %:

Хлорид серебра - 12,7;

Бромид серебра - 87,3.

Оболочка световода диаметром 0,4 мм имеет состав сердцевины. В нее помещены в гексагональном порядке шесть стержней диаметром 11,1 мкм на расстоянии 55,0 мкм между их центрами, имеющие состав в мас. %:

Хлорид серебра - 20,3

Бромид серебра - 79,7.

При такой структуре световода отношение диаметра стержней в оболочке к расстоянию между их центрами составляет 11,1/55,0=0,2. Проведена съемка торца световода при мощности выходящего излучения 0,5 Вт, что соответствует плотности мощности 7,05 кВт/см2 на длине волны 10,6 мкм. Излучение имеет вид гауссовской функции. Оно распространяется под углом 7,7° при числовой апертуре NA=0,134, что указывает на существование одной фундаментальной моды низшего порядка, т.е. подтверждается одномодовый режим работы ИК-световода.

Пример 2

Получен одномодовый световод для работы на длине волны 10,6 мкм (СО2 лазер). Сердцевина световода имеет диаметр 92,5 мкм и изготовлена из кристаллов состава в мас. %:

Хлорид серебра - 14,8;

Бромид серебра - 85,2,

в которую помещена центральный стержень диаметром 10,6 мкм состава в мас. %:

Хлорид серебра - 13,1;

Бромид серебра - 86,9.

Оболочка диаметром 0,3 мм состава сердцевины в мас. %:

Хлорид серебра - 14,8;

Бромид серебра - 85,2.

имеет в своем составе шесть стержней диаметром 10,6 мкм, расположенных на расстоянии 52,7 мкм между их центрами. Стержни выполнены из кристаллов состава в мас. %:

Хлорид серебра - 20,7;

Бромид серебра - 79,3.

Отношение диаметра стержней в оболочке к расстоянию между их центрами составляет 10,6/52,7=0,2. При мощности выходящего из световода лазерного излучения в 0,5 Вт под углом 8,1° и при NA=0,143 плотность мощности составляет 8,17 кВт/см2 для работы СО2 лазера. В световоде распространяется одна мода низшего порядка.

Пример 3

Для передачи электромагнитного излучения медицинского СО2 лазера изготовили световод из нетоксичных кристаллов системы AgCl-AgBr. Световод состоит из сердцевины диаметром 97,5 мкм и состава в мас. %:

Хлорид серебра - 13,9;

Бромид серебра - 86,1.

В сердцевине расположен центральный стержень диаметром 11,7 мкм и состава в мас. %:

Хлорид серебра - 12,3;

Бромид серебра - 87,7.

Оболочка световода диаметром 0,5 мм состава сердцевины имеет шесть стержней того же диаметра, что и центральный стержень, т.е. 11,7 мкм, расположенных в гексагональном порядке на расстоянии между их центрами 58,3 мкм, имеющих состав в мас. %:

Хлорид серебра - 19,8;

Бромид серебра - 80,2.

Диаметра стержней в оболочке к расстоянию между их центрами составляет 11,7/58,3=0,2. При съемке торца световода, работающего на длине волны 10,6 мкм, излучение имеет гауссовскую функцию при мощности выходящего из световода излучения в 0,5 Вт под углом 7,4°, NA=0,130 и плотности мощности 6,7 кВт/см2. Световод такой структуры является одномодовым в пределах фундаментальной запрещенной зоны.

При изготовлении инфракрасного световода, имеющего состав сердцевины и оболочки менее 85,2 мас. % или более 86,1 мас. % бромида серебра в твердом растворе хлорид-бромида серебра при диаметре сердцевины менее 92,5 мкм или более 97,5 мкм, а также при изготовлении центрального стержня и шести стержней в оболочке диаметром менее 10,6 мкм или более 11,7 мкм и на расстоянии между центрами стержней в оболочке менее 52,7 мкм или более 58,3 мкм при составе центрального стержня менее 86,9 мас. % или более 87,7 мас. % бромида серебра в твердом растворе хлорид бромида серебра и составе стержней в оболочке менее 79,3 мас. % или более 80,2 мас. % бромида серебра в твердом растворе, не удается достигнуть одномодового режима работы инфракрасного световода. Кроме того, диаметр оболочки не должен быть менее 0,3 и более 0,5 мм.

Технический результат

Схема структуры световода и распределение Z-компоненты светового вектора представлены на чертеже. Основная часть плотности светового потока S в сердцевине удовлетворяет условию S≤Smax/e2 и приходится на площадь в 7088 мкм2, что соответствует диаметру в 95,0±2,5 мкм. Исходя из последнего заданы параметры микроструктуры: диаметр стержней в оболочке d=11.1±0.6 мкм и шаг микроструктуры Δ=55,5±2,8 мкм, т.е. расстояние между их центрами.

В центре сердцевины расположен стержень состава с большим показателем преломления, чем составы сердцевины, оболочки и шести стержней в оболочке. За счет этого вклад в поддержание моды дает не только механизм фотонных запрещенных зон, но и механизм полного внутреннего отражения.

Одномодовый режим работы световода при передаче излучения СО2 лазера позволяет минимизировать апертуру выходящего лазерного излучения, а расширение поля моды от 92,5 до 97,5 мкм позволяет передавать плотность мощности энергии от 6,7 до 8,17 кВт/см2, что обеспечивает стабильный и контролируемый режим работы медицинского СО2 лазера. При этом глубина проникновения лазерного излучения в органическую ткань составляет от 20 до 50 мкм. Кроме того, существует возможность создания взаимозаменяемых, легко стыкующихся волоконно-оптических компонентов для лазерного медицинского оборудования на длине волны 10,6 мкм.


ИНФРАКРАСНЫЙ СВЕТОВОД С БОЛЬШИМ ДИАМЕТРОМ ПОЛЯ МОДЫ
ИНФРАКРАСНЫЙ СВЕТОВОД С БОЛЬШИМ ДИАМЕТРОМ ПОЛЯ МОДЫ
Источник поступления информации: Роспатент

Showing 181-190 of 210 items.
20.04.2023
№223.018.4c21

Применение натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-3,8-дикарбоновой кислоты, моногидрата в качестве средства лечения и профилактики поздних осложнений сахарного диабета

Изобретение относится к применению натриевой соли диэтилового эфира 4-оксо-1,4-дигидропиразоло[5,1-с]-1,2,4-триазин-3,8-дикарбоновой кислоты, моногидрата формулы I в качестве средства лечения и профилактики отдаленных последствий сахарного диабета. Натриевая соль диэтилового эфира...
Тип: Изобретение
Номер охранного документа: 0002765117
Дата охранного документа: 25.01.2022
10.05.2023
№223.018.538f

Способ определения микронеоднородности расплава образца многокомпонентного металлического сплава

Изобретение относится к технической физике и металлургии. Предложен способ определения микронеоднородности расплава образца многокомпонентного металлического сплава посредством получения температурных зависимостей кинематической вязкости ν(T) при нагреве и охлаждении расплавленного образца...
Тип: Изобретение
Номер охранного документа: 0002795262
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.53b4

Применение 2-(пирен-1-ил)нафто[1,2-d]оксазолил-5-сульфокислоты в качестве мономолекулярного агента для фотодинамической терапии

Изобретение относится к области биологически активных соединений, а именно к применению 2-(пирен-1-ил)нафто[1,2-d]оксазолил-5-сульфокислоты. Технический результат: применение 2-(пирен-1-ил)нафто[1,2-d]оксазолил-5-сульфокислоты в качестве мономолекулярного агента для генерирования радикальных...
Тип: Изобретение
Номер охранного документа: 0002795221
Дата охранного документа: 02.05.2023
11.05.2023
№223.018.53f9

Низкопрофильная градирня

Изобретение относится к охлаждению оборотной воды в теплообменном оборудовании промышленных объектов. Низкопрофильная градирня характеризуеся тем, что к водосборному бассейну охлажденной воды, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный...
Тип: Изобретение
Номер охранного документа: 0002795416
Дата охранного документа: 03.05.2023
11.05.2023
№223.018.542d

Направленный ответвитель в интегральной оптической схеме

Изобретение относится к интегральной оптике и предназначено для разделения входного света на две части. Устройство включает в себя четыре модифицированных Y-образных делителя, соединенных между собой особым образом, а в случае пересечения волноводов в одном слое используются кроссоверы,...
Тип: Изобретение
Номер охранного документа: 0002795392
Дата охранного документа: 03.05.2023
12.05.2023
№223.018.5464

Способ электроосаждения сплошных осадков кремния из расплавленных солей

Изобретение относится к получению сплошных осадков кремния для использования в качестве фоточувствительных материалов, устройств микроэлектроники и накопления энергии. Способ электроосаждения сплошных осадков кремния из расплавленных солей включает электролиз в инертной атмосфере галогенидного...
Тип: Изобретение
Номер охранного документа: 0002795477
Дата охранного документа: 03.05.2023
14.05.2023
№223.018.54ce

Система управления цифровой подстанцией

Изобретение относится к области электротехники, в частности к системам управления цифровых подстанций. Технический результат заключается в повышении гибкости архитектуры системы управления цифровой подстанцией, достигается тем, что система управления цифровой подстанцией включает датчики...
Тип: Изобретение
Номер охранного документа: 0002737862
Дата охранного документа: 04.12.2020
14.05.2023
№223.018.55e6

Способ получения биоэтанола из водорослей

Изобретение относится к области биотехнологии. Предложен способ получения биоэтанола из водорослей. Способ включает предварительное формирование биомассы, инициирование ее распада путем ферментативного гидролиза, введение в распадающуюся биомассу дрожжей для образования бродящего раствора и...
Тип: Изобретение
Номер охранного документа: 0002731987
Дата охранного документа: 09.09.2020
14.05.2023
№223.018.568c

Способ оценивания режимных параметров энергосистемы с использованием уравнений балансов мощности или энергии

Использование: в области электроэнергетики. Технический результат – повышение точности определения режимных параметров в условиях неполноты сведений об энергосистеме, а также обеспечение возможности использования измерений токов, активных и реактивных мощностей и энергий, модулей узловых...
Тип: Изобретение
Номер охранного документа: 0002734319
Дата охранного документа: 15.10.2020
14.05.2023
№223.018.56ab

Способ выявления однофазных замыканий на землю в присоединениях распределительной сети

Использование: в области электроэнергетики. Технический результат – повышение надежности выявления однофазных замыканий на землю в присоединениях распределительной сети. В способе выявления однофазных замыканий на землю в присоединениях распределительной сети используют сигнал тока нулевой...
Тип: Изобретение
Номер охранного документа: 0002734164
Дата охранного документа: 13.10.2020
Showing 81-82 of 82 items.
15.05.2023
№223.018.5972

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
16.05.2023
№223.018.628b

Инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в трансформаторном масле

Изобретение относится к измерительной технике на основе волоконно-оптических каналов и предназначено для осуществления непрерывного контроля содержания влаги и растворенных газов в изоляционном масле. Заявленная инфракрасная волоконно-оптическая система мониторинга растворенных газов и влаги в...
Тип: Изобретение
Номер охранного документа: 0002785693
Дата охранного документа: 12.12.2022
+ добавить свой РИД