×
20.01.2018
218.016.118c

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ

Вид РИД

Изобретение

№ охранного документа
0002634090
Дата охранного документа
23.10.2017
Аннотация: Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Технический результат: обеспечение возможности повышения точности измерения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для контроля потоков неоднородных диэлектрических веществ, у которых компоненты могут занимать произвольное положение при движении в трубопроводах, для высокоточного определения различных физических свойств (плотности, концентрации смеси веществ, влагосодержания и др.) неоднородных диэлектрических веществ (жидкостей, газов), перемещаемых по трубопроводам. Высокоточная информация о физических свойствах (плотности сыпучего вещества, сплошности газо-жидкостного потока) неоднородного диэлектрического вещества в потоке важна не только для контроля и регулирования технологических процессов, но и для определения массового расхода вещества, связанного с этими свойствами.

Известны различные устройства для определения физических свойств диэлектрических веществ в потоке, в частности перемещаемого по трубопроводу, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков в виде полых волноводов, антенн, отрезков длинных линий и др. (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука, 1989. С. 168-177). При неоднородном или переменном характере распределения вещества имеет место существенная погрешность измерения, поскольку электромагнитное поле в таких датчиках неоднородно на их измерительных участках, что приводит к погрешности измерения при изменения распределения такого вещества.

Известно также техническое решение (US 4104585 A, 01.08.1978), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит волноводный объемный резонатор, через сквозные отверстия в противоположных торцах которого пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом. К резонатору подсоединены с помощью элементов связи генератор электромагнитных колебаний и электронный блок. Недостатком данного устройства является его невысокая точность при проведении измерений в реальных условиях, когда контролируемое диэлектрическое вещество изменяет характер своего распределения при его движении. При этом это вещество (его размеры, форма и расположение) смещается относительно картины неоднородного распределения электрического поля стоячей волны в резонаторе и, как следствие, изменяется значение информативного параметра - резонансной частоты электромагнитных колебаний резонатора, приводя к снижению точности измерения.

Техническим результатом изобретения является повышение точности измерения.

Технический результат достигается тем, что предлагаемое устройство для измерения физических свойств вещества в потоке, содержащее на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. При этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены электромагнитные колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Волноводный прямоугольный резонатор может быть скручен вдоль его продольной оси, по меньшей мере, на 90°.

Предлагаемое устройство поясняется чертежами на фиг. 1, фиг. 2 и фиг. 3.

На фиг. 1 изображено поперечное сечение прямоугольного волновода с двумя диэлектрическими вставками и диэлектрической трубой, распределение в нем электрического поля.

На фиг. 2 изображен прямоугольный волноводный резонатор, скрученный вдоль продольной оси на 90°.

На фиг. 3 приведена функциональная схема устройства.

На фигурах показаны прямоугольный волновод 1, диэлектрические вставки 2 и 3, диэлектрическая труба 4, скрученный прямоугольный волноводный резонатор 5, участки трубопровода 6 и 7, прямоугольный волноводный резонатор 8, запредельные волноводы 9 и 10, элементы связи 11 и 12, генератор электромагнитных колебаний 13, электронный блок 14.

Устройство работает следующим образом.

Применение датчика на основе проточного волноводного резонатора с пропущенной вдоль его продольной оси диэлектрической трубой позволяет, при обеспечении равномерного характера распределения электрического поля в объеме резонатора, достигаемого в предлагаемом устройстве, обеспечивает измерение параметров физических свойств неоднородного диэлектрического вещества независимо от конфигурации потока, распределения в нем имеющихся неоднородностей.

Для этой цели необходимо иметь однородное распределение энергии электромагнитного поля в поперечном сечении волноводного резонатора. Такое приблизительно однородное распределение обеспечивается в волноводном резонаторе на основе прямоугольного волновода 1 (фиг. 1). На фиг. 1 показано распределение амплитуды напряженности электрического поля E в поперечном сечении прямоугольного волновода и волноводного резонатора на его основе. У противоположных широких сторон поперечного сечения прямоугольного волновода 1 вдоль его длины размещены диэлектрические вставки 2 и 3 с толщиной d и диэлектрической проницаемостью ε. В центральной свободной части поперечного сечения волновода с исходным типом волн H10 существует поле поперечные волны типа TEM (VanKoughnett A.L., Wyslouzil W.A waveguide TEM mode exposure chamber // Journal of Microwave Power. 1972, vol. 7, N 4, pp. 381-283). Эти волны являются поперечными (TEM), если выполнено следующее условие:

где λ - длина волны в свободном пространстве на используемой рабочей частоте.

Волноводный прямоугольный резонатор, выполненный на основе такого прямоугольного волновода 1, вдоль продольной оси которого пропущена диэлектрическая труба 4 с контролируемым веществом, может служить в качестве датчика для измерений физических свойств движущихся диэлектрических веществ, как однородных, так и содержащих различные неоднородности. При этом данные неоднородности могут изменять свое распределение в объеме резонатора в процессе измерения.

В этом случае имеет место почти равномерное распределение электромагнитной энергии в свободном пространстве волновода, а также в рассматриваемом резонаторе на его основе, содержащем диэлектрическую трубу с контролируемым диэлектрическим веществом вдоль продольной оси волновода. В качестве диэлектрических вставок могут применяться различные материалы: плексиглас (ε=2.59), корунд (ε=10.07) и др. Так, требуемый режим работы с электромагнитном полем TEM-типа в центральной части волновода обеспечивается на частоте 2450 МГц (λ=12,45 см) при следующих параметрах: размеры поперечного сечения 7×3,5 см2; ε=7; d=1,3 см. Можно считать, что такое же равномерное распределение поля в этой области имеет место и при малых изменениях частоты генератора или при введении диэлектрической трубы с контролируемым диэлектрическим веществом в рассматриваемое свободное пространство, незначительно изменяя электрическое поле стоячей волны в резонаторе.

В данном резонаторе возбуждают колебания типа H10n, n=1, 2, …, низшим из которых является H101 и которому соответствует наименьшее значение резонансной частоты ƒp электромагнитных колебаний данного резонатора. При этом первые два индекса (1 и 0) соответствуют числу полуволн поля стоячей электромагнитной волны в волноводном резонаторе в его поперечном сечении (фиг. 1), а третий индекс n=1, 2, … - числу полуволн поля стоячей волны вдоль продольной оси данного прямоугольного резонатора (т.е. вдоль диэлектрической трубы с контролируемым диэлектрическим веществом). Однородное распределение энергии электромагнитного поля в таком волноводе и резонаторе на его основе приводит к независимости результатов измерений от конфигурации потока, распределения в нем имеющихся неоднородностей.

В прямоугольном резонаторе, в отличие от прямоугольного волновода, имеет место картина стоячей волны с наличием максимумов и минимумов электрического и магнитного полей по объему резонатора. При этом вдоль длины L резонатора в продольной плоскости умещается полуволн, т.е. , n=1, 2, …. С учетом этого соотношение (1) для рассматриваемого резонатора записывается так:

откуда находим

Для основного типа колебаний H101 при n=1 формула (3) принимает вид

Таким образом, в данном прямоугольном волноводном резонаторе конфигурация потока неоднородного диэлектрического вещества, перемещаемого на измерительном участке трубопровода по диэлектрической трубе внутри рассматриваемого резонатора, а также распределение по объему этой трубы присущих веществу в потоке неоднородностей не оказывают влияния на значение информативного параметра - резонансной частоты электромагнитных колебаний резонатора. Эта частота зависит от измеряемого физического свойства вещества - плотности, концентрации смеси веществ, влагосодержания неоднородных диэлектрических веществ (жидкостей, газов) и т.п.

В показанном на фиг. 1 поперечном сечении волноводного прямоугольного резонатора с диэлектрической трубой 4, располагаемой вдоль продольной оси этого резонатора, в обеих частях полости резонатора, как в указанном выше прямоугольном волноводе 1, имеются диэлектрические вставки 2 и 3 с тем же поперечным размером, что и у резонатора, а продольный размер каждой вставки имеет величину , n=1, 2, …, где в данном случае L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Волноводный резонатор может быть снабжен запредельным волноводом с каждого его торца. Роль такого волновода может играть участок самого металлического трубопровода, по которому перемещается поток вещества. Внутренние диаметры этих запредельных волноводов соответствует диаметру диэлектрической трубы внутри резонатора для предотвращения движения потока контролируемого вещества. Наличие запредельного волновода препятствует излучению электромагнитных волн за пределы полости резонатора и, тем самым, обеспечивает высокое значение добротности резонатора. Измеряя текущее значение ƒp резонансной частоты электромагнитных колебаний резонатора, можно определить диэлектрическую проницаемость εм контролируемого вещества и связанные с ней функционально значения измеряемого физического свойства вещества.

Возможно дополнительное повышение точности измерения путем скручивания данного прямоугольного волноводного резонатора вдоль его продольной оси, по меньшей мере, на угол φ=90°. На фиг. 2 приведен такой скрученный прямоугольный волноводный резонатор 5. Вдоль его продольной оси расположена диэлектрическая труба 4, по которой перемещается контролируемое вещество. У каждого из торцов данного резонатора к концам этой диэлектрической трубы 4 подсоединен соответствующий участок трубопровода 6 и 7, имеющий тот же внутренний диаметр, что и у диэлектрической трубы 4. При выполнении этих участков 6 и 7 (как и самого трубопровода) из металла, они выполняют роль запредельных волноводов.

В этом случае картина силовых линий однородного электрического поля стоячей волны скрученного прямоугольного волноводного резонатора 5 идентична во всех сечениях измерительного участка, но отличается по ориентации по угловой координате. Если угол φ=90°, то на противоположных торцах резонатора силовые линии электрического поля взаимно-перпендикулярны. Если φ=180°, то направление силовых линий электрического поля на торцах резонатора противоположно. В датчике на основе такого резонатора производится пространственное усреднение результатов измерения физических свойств неоднородного веществе в потоке, причем степень усреднения и, следовательно, точность измерения, можно регулировать величиной угла φ.

На фиг. 3 показана схема устройства с датчиком на основе волноводного прямоугольного резонатора 8 с диэлектрической трубой 4 внутри этого резонатора вдоль его продольной оси, содержащей движущееся диэлектрическое вещество. Диэлектрические вставки 2 и 3 расположены в соответствующих частях полости резонатора. Наличие запредельных волноводов 9 и 10 с обоих торцов волноводного резонатора, диаметр которых соответствует диаметру диэлектрической трубы 4 внутри резонатора, препятствует излучению электромагнитных волн за пределы полости резонатора. Элементы связи 11 и 12, расположенные в центре широких стенок волноводного резонатора, служат для возбуждения электромагнитных колебаний в полости резонатора с помощью генератора электромагнитных колебаний 13 и его подсоединения к электронному блоку 14 для измерения резонансной частоты ƒp данного резонатор, по значению которой судят об измеряемом физическом свойстве вещества в потоке.

Таким образом, предлагаемое устройство обеспечивает более высокую точность измерений физических свойств диэлектрического вещества в потоке при возможности изменения его конфигурации в процессе движения. Данное устройство обеспечивает независимость результатов измерений от распределения возможных неоднородностей вещества в его потоке на измерительном участке устройства.


УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ
Источник поступления информации: Роспатент

Showing 191-200 of 304 items.
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3976

Устройство для измерения толщины покрытий

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с...
Тип: Изобретение
Номер охранного документа: 0002647180
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
Showing 191-200 of 228 items.
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
+ добавить свой РИД